Skip to main content

The Effects of Abrupt Changing Data in CART Inference Models

  • Conference paper
  • First Online:
Trends and Applications in Information Systems and Technologies (WorldCIST 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1366))

Included in the following conference series:

  • 1800 Accesses

Abstract

The continuous input of data into an Information System makes it difficult to generate a reliable model when this stream changes unpredictably. This continuous and unexpected change of data, known as concept drift, is faced by different strategies depending on its type. Several contributions are focused on the adaptations of traditional Machine Learning techniques to solve these data streams problems. The decision tree is one of the most used Machine Learning techniques due to its high interpretability. This article aims to study the impact an abrupt concept change has on the accuracy of the original CART proposed by Breiman, and justify the necessity of detection and/or adaptation methodologies that update or rebuild the model when a concept drift occurs. To do that, some simulated experiences have been carried out to study several training and testing conditions in a changing data environment. According to the results, models that are rebuilt in the right moment after a concept drift occurs obtain high accuracy rates while those that are not rebuilt or are rebuilt after a change occurs, obtain considerably lower accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marascu, A., Masseglia, F.: Mining sequential patterns from data streams: a centroid approach. J. Intell. Inf. Syst. 27(3), 291–307 (2006)

    Article  Google Scholar 

  2. Govindaraju, N.K., Raghuvanshi, N., Manocha, D.: Fast and approximate stream mining of quantiles and frequencies using graphics processors. In: Proceedings of the International Conference on Management of Data, pp. 611–622 (2005)

    Google Scholar 

  3. Masud, M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: Classification and novel class detection in concept drifting data stream sunder time constraints. IEEE Trans. Knowl. Data Eng. 23(6), 859–874 (2011)

    Article  Google Scholar 

  4. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  5. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)

    Article  Google Scholar 

  6. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  7. Gama, J., Rodrigues, P.: An overview on mining data streams. In: Studies in Computational Intelligence, vol. 206. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01091-0_2

  8. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 16, 37 (2013). https://doi.org/10.1145/2523813

    Article  MATH  Google Scholar 

  9. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106 (2001)

    Google Scholar 

  10. Kosina, P., Gama, J.: Very fast decision rules for classification in data streams. Data Min. Knowl. Disc. 29(1), 168–202 (2013). https://doi.org/10.1007/s10618-013-0340-z

    Article  MathSciNet  Google Scholar 

  11. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB Endowment, vol. 29, pp. 81–92 (2003)

    Google Scholar 

  12. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining. ACM SIGMOD Rec. 35(1), 14–19 (2006)

    Article  Google Scholar 

  13. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online outlier detection in sensor data using non-parametric models. In: Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB Endowment, pp. 187–198 (2006)

    Google Scholar 

  14. Utgo, P.: ID5: an incremental ID3. In: 5th International Conference on Machine Learning, pp. 107–120. Morgan Kaufmann Publishers (1988)

    Google Scholar 

  15. Utgo, P., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree restructuring. Mach. Learn. 29(1), 5–44 (1997)

    Article  Google Scholar 

  16. Wang, H., Fan, W., Yu, P., Han. J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 735–740. ACM Press (2003)

    Google Scholar 

  17. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)

    Google Scholar 

  18. Singh, S., Gupta, P.: Comparative study ID3, CART and C4.5 decision tree algorithm a survey. Int. J. Adv. Inf. Sci. Technol. (IJAIST) 27(27), 97–103 (2014)

    Google Scholar 

  19. Wang, Y., Witten, I.H.: Induction of Model Trees for Predicting Continuous Classes (1996)

    Google Scholar 

  20. Fan, G., Gray, J.B.: Regression tree analysis using TARGET. J. Comput. Graph. Stat. 14(1), 206–218 (2005)

    Article  MathSciNet  Google Scholar 

  21. Shao, Y., Lunetta, R.S.: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote. Sens. 70, 78–87 (2012)

    Article  Google Scholar 

  22. Bhavsar, H., Ganatra, A.: A comparative study of training algorithms for supervised machine learning. Int. J. Soft Comput. Eng. (IJSCE) 2(4), 2231–2307 (2012)

    Google Scholar 

  23. Lewis, R.J.: An introduction to classification and regression tree (CART) analysis. In: Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California, vol. 14 (2000)

    Google Scholar 

  24. Aggarwal, C.: Data Streams, Models and Algorithms, Springer, LLC., New York (2007)

    Google Scholar 

  25. Bifet, A., Kirkby, R.: Data Stream Mining a Practical Approach, Technical report, University of Waikato (2009)

    Google Scholar 

  26. Fan, W., Huang, Y., Wang, H. and Yu, P.: Active mining of data streams. In: Proceedings of the SDM (2004)

    Google Scholar 

  27. Gaber, M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. Sigmod Rec. 34, 18–26 (2005)

    Article  Google Scholar 

  28. Gao, J., Fan, W., Hang, J.: On appropriate assumptions to mine data streams: analysis and practice. In: 2007 IEEE International Conference on Data Mining, ICDM 2007, Omaha, NE (2007)

    Google Scholar 

  29. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2006)

    Google Scholar 

  30. He, H., Chen, S., Li, K., Xu, X.: Incremental learning from stream data. IEEE Trans. Neural Netw. 22, 1901–1914 (2011)

    Article  Google Scholar 

  31. Franke, C.: Adaptivity in Data Stream Mining, Ph.D. thesis, University of California, Davis (2009)

    Google Scholar 

  32. Tsymbal, A.: The problem of concept drift: definitions and related work, Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin, Ireland (2004)

    Google Scholar 

  33. Kuncheva, L.I.: Classifier ensembles for changing environments. In: Multiple Classifier Systems, p. 15. Springer, Heidelberg (2004)

    Google Scholar 

  34. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

    MATH  Google Scholar 

  35. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382 (2001)

    Google Scholar 

  36. Ertekin, S., Bottou, L., Giles, C.L.: Nonconvex online support vector machines. IEEE Trans. Pattern Anal. Machine Intell. 33, 368–381 (2011)

    Article  Google Scholar 

  37. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal. 8(3), 281–300 (2004)

    Article  Google Scholar 

  38. Gama, J., Medas, P., Rodrigues, P.: Learning decision trees from dynamic data streams. In: Proceedings of the 20th Annual ACM Symposium on Applied Computing, pp. 573–577 (2005)

    Google Scholar 

  39. Gama, J., Fernandes, R., Rocha, R.: Decision trees for mining data streams. Intell. Data Anal. 10(1), 23–45 (2006)

    Article  Google Scholar 

  40. Natwichai, J., Li, X.: Knowledge maintenance on data streams with concept drifting. In: International Conference on Computational and Information Science, pp. 705–710. Springer, Heidelberg (2004)

    Google Scholar 

  41. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedeings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  42. Liu, J., Li, X., Hong, W.: Ambiguous decision trees for mining concept-drifting data streams. Patt. Recogn. Lett. 30(15), 1347–1355 (2009)

    Article  Google Scholar 

  43. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  44. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2012)

    Article  Google Scholar 

  45. Gama, J., Medas, P., Rocha, R.: Forest trees for on-line data. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 632–636 (2004)

    Google Scholar 

  46. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–5 (2014)

    Article  Google Scholar 

  47. Fisher, D., Schlimmer, C.L.: Models of incremental concept learning: a coupled research proposal. Technical report CS-88-05, Vanderbilt University (1988)

    Google Scholar 

  48. Giraud-Carrier, C.L.: A note on the utility of incremental learning. AI Commun. 13(4), 215–223 (2000)

    MATH  Google Scholar 

  49. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996)

    Google Scholar 

  50. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 7th SIAM International Conference on Data Mining, vol. 7 (2007). https://doi.org/10.1137/1.9781611972771.42.

Download references

Acknowledgments

The authors are grateful for the financial support from Spanish Ministry of Science, Innovation and Universities under Grant FPU17/05365 and Grant DIN2018-010101. This work was also supported by the Spanish Ministry of Science and Innovation and the State Research Agency under grant PID2019-105952GB-I00/AEI/https://doi.org/10.13039/501100011033 and Miguel Hernández University under grant 197T/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Esteve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esteve, M., Mollá-Campello, N., Rodríguez-Sala, J.J., Rabasa, A. (2021). The Effects of Abrupt Changing Data in CART Inference Models. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies . WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1366. Springer, Cham. https://doi.org/10.1007/978-3-030-72651-5_21

Download citation

Publish with us

Policies and ethics