Abstract
Conformance checking is an important aspect of process mining that identifies the differences between the behaviors recorded in a log and those exhibited by an associated process model. Machine learning and deep learning methods perform extremely well in sequence analysis. We successfully apply both a Recurrent Neural Network and a Random Forest classifiers to the problem of evaluating whether the alignment cost of a log trace to a process model is below an arbitrary threshold, and provide a lower bound for the fitness of the process model based on the classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The size of the embedding layer, the number of epochs, the batch size, and the stack of LSTM layers were chosen after several initial experiments, as they were the parameters that yielded the best results.
- 3.
References
Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7
Adriansyah, A.: Aligning observed and modeled behavior (2014)
van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and observed behavior: a compromise between computation complexity and quality. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_7
Carmona, J., de Leoni, M., Depaire, B., Jouck, T.: Summary of the process discovery contest 2016. In: Proceedings of the Business Process Management Workshops, Springer (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19
Lin, L., Wen, L., Wang, J.: Mm-Pred: a deep predictive model for multi-attribute event sequence. In: International Conference on Data Mining, SIAM (2019)
Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: International Conference on Process Mining, ICPM, IEEE (2019)
Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_14
Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25
Sun, C., Du, J., Chen, N., Khoo, S.C., Yang, Y.: Mining explicit rules for software process evaluation. In: Proceedings of the 2013 International Conference on Software and System Process (2013)
Bose, R.J.C., van der Aalst, W.M.: Discovering signature patterns from event logs. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE (2013)
Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic declarative process mining. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 292–303. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15280-1_28
Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: DeepAlign: alignment-based process anomaly correction using recurrent neural networks. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_20
Olah, C.: Understanding LSTM networks, August 2015. Accepted 02 Sept 2020
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M., Reissner, D.: Abstract-and-compare: a family of scalable precision measures for automated process discovery. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 158–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_10
Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29, 300–314 (2016)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6
Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59, 251–284 (2019)
Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G.: Automated discovery of structured process models from event logs: the discover-and-structure approach. Data Knowl. Eng. 117, 373–392 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Boltenhagen, M., Chetioui, B., Huber, L. (2021). An Alignment Cost-Based Classification of Log Traces Using Machine-Learning. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-72693-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72692-8
Online ISBN: 978-3-030-72693-5
eBook Packages: Computer ScienceComputer Science (R0)