Quishpi, L.; Carmona, J.; Padrd, L. Improving the extraction of process annotations from text with inter-sentence analysis. A: International
Conference on Process Mining. "Process Mining Workshops: ICPM 2020 International Workshops: Padua, Italy, October 5-8, 2020: revised selected
papers". Berlin: Springer, 2020, p. 149-161. ISBN 978-3-030-72693-5.

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-72693-5_12.

Improving the Extraction of Process
Annotations from Text with Inter-Sentence
Analysis

Luis Quishpi, Josep Carmona, and Lluis Padré

Computer Science Department
Universitat Politecnica de Catalunya
Barcelona, Spain.

{quishpi, jcarmona,padro}@cs.upc.edu

Abstract. The automatic extraction of formal process information from
textual descriptions of processes is a challenging problem, but worth ex-
ploring, since it enables organizations to align complementary informa-
tion that talks about processes. In this paper we continue our previous
work on this area, based on defining hierarchical/tree patterns on the
dependency trees that arise from the linguistic analysis. We now incor-
porate a new abstraction layer on these patterns, that consider relation-
ships between nearby sentences. The aim of this extension is to capture
inter-sentence relationships that typically arise in textual descriptions of
processes. The experiments done on publicly available benchmarks cor-
roborate this intuition, showing a significant rise in the ability to capture
all the important control-flow relationships defined in the text.

1 Introduction

As it has been recently acknowledged, there are quite important challenges on
applying Natural Language Processing (NLP) techniques in the field of Business
Process Management (BPM) [12]. Among the important ones, the extraction of
process models from textual process descriptions is a very attractive use case,
since the creation of process models consumes up to 60% of the time spent on
process management projects. This paper focuses on this challenging task.

Although different approaches have been considered in the last years (see
section , a number of open challenges remain for reaching a maturity level
enabling its widespread adoption. For instance, techniques must be able to iden-
tify sentences that provide contextual information, rather than describe process
steps. Furthermore, the inherent ambiguity of natural language can lead to dif-
ferent interpretations regarding the process that is described [14].

In this paper we significantly expand the techniques and results recently pre-
sented in [9], where we described robust tree-based patterns to be queried over
the dependency trees arising from the NLP analysis of the textual descriptions.
Patterns in [9] where only applicable in the context of a single sentence, which
made our approach unable to extract inter-sentence relationships. The contribu-
tion of this paper is therefore the extension of our previous contribution with a

more general set of patterns, resulting in a significant boost in the recall of the
original framework (see experiment results in section .

The paper is organized as follows: next section shortly describes the work
related to this contribution. Section [3| overviews the main components of our
proposal, presented in Section [4 Experiments and tool support are reported in
Section [5} whilst Section [6] concludes the paper and outlines future work.

2 Related work

For the sake of space, we only report here the related work that focuses on the
extraction of process knowledge from textual descriptions [I/4/13], or the work
that considers textual annotations in the scope of BPM [7U10].

For the former, the work by Gongalves et al. [I] adopts important steps to
extract the different BPMN elements and the work by Friedrich et al. [4] is
acknowledged as the state-of-the-art for extracting process representations from
textual descriptions, so we focus our comparison on this approach. As we will
see in the evaluation section, our approach is significantly more accurate with
respect to the state-of-the-art in the extraction of the main process elements.
Likewise, we have incorporated as well the patterns from [13], and a similar
outcome is reported in the experiments. The main reason is that approach relies
on a deep NLP analysis and patterns on the syntactic structure of the sentence,
instead of a shallow analysis and flat patterns.

For the later type of techniques ([7J10]), we see these frameworks as the prin-
cipal application for our techniques. In particular, we have already demonstrated
in the platform https://modeljudge.cs.upc.edul an application of the use of
annotations in the scope of teaching and learning process modelingﬂ

3 Preliminaries

The core of our proposal is the use of deep NLP analyzers to convert a textual
description of a process into a syntax-semantic structure. Then, this structure is
mined using tree-shaped patterns to obtain a conceptual representation of the
process. Although other tools could be used, we resort to FreeLing as a NLP
analyzer, TRregex as a tree-oriented pattern matching tool, and ATDP as a
conceptual representation support. We describe each of them below.

3.1 Natural Language Processing

Linguistic analysis tools can be used as a means to structure information con-
tained in texts for its later processing in applications less related to language
itself. This is our case: we use NLP analyzers to convert a textual description of
a process model into a structured representation.

! The reader can see a tutorial for annotating process modeling exercises in the
ModelJudge platform at https://modeljudge.cs.upc.edu/modeljudge_tutorial/.

https://modeljudge.cs.upc.edu
https://modeljudge.cs.upc.edu/modeljudge_tutorial/

The NLP processing software used in this work is FreeLingﬂ [8], an open—
source library of language analyzers providing a variety of analysis modules for a
wide range of languages. More specifically, the natural language processing layers
used in this work are: tokenization & sentence splitting, morphological analysis,
PoS-Tagging, Named Entity Recognition, Word sense disambiguation, Depen-
dency parsing, Semantic role labeling and Coreference resolution. The three last
steps are of special relevance since they allow the top-level predicate construc-
tion, and the identification of actors throughout the whole text: dependency
parsing identifies syntactic subjects and objects (which may vary depending,
e.g., on whether the sentence is active or passive), while semantic role labeling
identifies semantic relations (the agent of an action is the same regardless of
whether the sentence is active or passive). Coreference resolution links several
mentions of an actor as referring to the same entity.

3.2 Annotated Textual Descriptions of Processes (ATDP)

ATDP is a formalism proposed in [I0], aiming to represent process models on top
of textual descriptions. This formalism naturally enables the representation of a
wide range of behaviors, ranging from procedural to completely declarative, but
also hybrid ones. Different from classical conceptual modeling principles, this
highlight ambiguities that can arise from a textual description of a process, so
that a specification can have more than one possible interpretatiorﬂ

ATDP specifications can be translated into linear temporal logic over finite
traces [BI2], opening the door to formal reasoning, automatic construction of
formal models (e.g. in BPMN) from text, and other interesting applications
such as simulation: to generate end-to-end executions (i.e., an event log [15])
that correspdond to the process described in the text, which would allow the
application of process mining algorithms.

ATDP models are defined over an input text, which is marked with typed text
fragments, which may correspond to entities, or activities. Marked fragments can
be related among them via a set of fragment relations.

Entity fragments. The types of entity fragments defined in ATDP are:

— Role. The role fragment type is used to represent types of autonomous actors
involved in the process, and consequently responsible for the execution of
activities contained therein.

— Business Object. This type is used to mark all the relevant elements of the
process that do not take an active part in it, but that are used/manipulated
by process activities.

Activity fragments. ATDP distinguishes two types of activity fragments:

— Condition. Tt is considered discourse markers that mark conditional state-
ments, like: if, whether and either. Each discourse marker needs to be tailored
to a specific grammatical structure.

2 http://nlp.cs.upc.edu/freeling
3 In this work we consider a flattened version of the ATDP language, i.e., without the
notion of scopes.

http://nlp.cs.upc.edu/freeling

— Task and FEvent. Those fragment types are used to represent the atomic units
of work within the business process described by the text. Usually, these
fragments are associated with verbs. Event fragments are used to annotate
other occurrences in the process that are relevant from the point of view of
the control flow, but are exogenous to the organization responsible for the
execution of the process.

Fragment Relations. Text fragments can be related to each other by means of
different relations, used to express properties of the process emerging from the
text:

— Agent. Indicates the role responsible for the execution of an activity.

— Patient. Indicates the role or business object on which an activity is per-
formed.

— Coreference. Induces a coreference graph where each connected component
denotes a distinct process entity.

— Sequential. Indicates the sequential execution of two activity fragments
A1 and A2 in a sentence. We consider two important relations from [I0]:
Precedence and Response. Moreover, to cover situations where ambiguities
in the text prevent selecting any of the two aforementioned relations, we also
incorporate a less restrictive constraint WeakOrder, that only applies in case
both activities occur in a trace.

— Conflicting. A conflict relation between two condition activity fragments
(C1,C2) in a sentence indicates that one and only one of them can
be executed, thus capturing a choice. This corresponds to the relation
NonCoOccurrence from [10].

3.3 TRegex

In this paper, we use Tregexﬁ [6], a query language that allows the definition of
regular-expression-like patterns over tree structures. Tregex is designed to match
patterns involving the content of tree nodes and the hierarchical relations among
them. In our case we will be using Tregex to find substructures within syntactic
dependency trees. Applying Tregex patterns on a dependency tree allows us to
search for complex labeled tree dominance relations involving different types of
information in the nodes. The nodes can contain symbols or a string of characters
(e.g. lemmas, word forms, PoS tags) and Tregex patterns may combine those
tags with the available dominance operators to specify conditions on the tree.
Additionally, as in any regular expression library, subpatterns of interest may be
specified and the matching subtree can be retrieved for later use. This is achieved
in Tregex using unification variables as shown in pattern (2) in Figure

Figure [l describes the main Tregex operators used in this research to specify
pattern queries.

4 https://nlp.stanford.edu/software/tregex.html

https://nlp.stanford.edu/software/tregex.html

Operator Meaning A

X <Y X dominates Y

X > Y X is dominated by Y

X !> Y X is not dominated by Y B C D

X<y X immediately dominates Y I‘E F/\G H/’I\J
X>Y X is immediately dominated by Y Py

X>, Y X is the first child of Y K L

X >- Y X is the last child of Y (1) E>>(A<<G) (4) F!>>A
X >: Y X is the only child of Y (2) E>>(A=x)>:(B=y) (5) H>:D
X $-- Y X is a right sibling of Y (3) K!>>B>>(A<D) (6) A<J
Xs$. Y X is the immediate left sibling of Y

Fig. 1. Some operators provided by Tregex (left). The tree on the right would match
patterns (1), (2), (3), and would not match patterns (4), (5), (6). Note that unless
parenthesized, all operators refer to the first element in the pattern. Pattern (2) uses
operator = to capture nodes A and B into variables x and y respectively.

4 Generalized Approach

4.1 Basic Approach: Intra-Sentence Analysis

In this paper we describe an extension to the approach presented in [9]. This
subsection summarizes the basic original approach, and following subsections
provide details on the added extensions, which mainly consist of the extraction
of relations between actions or conditions in different sentences, as well as an
extended evaluation covering not only entities and actions, but also relations.

In [9] we presented a proposal to extract Business Process elements (entities,
actions, conditions, events, and relations) from a process textual description.

The approach consists of: (a) Use a full-fledged NLP analysis pipeline [g]
to analyze the text and extract verbal predicates, involved actors and objects,
syntactic trees of all sentences, and coreferences between different mentions of the
same actor/object, and (b) apply a cascade of TRegEx patterns on the output
of the NLP preprocess to extract and elaborate the relevant process information.
These patterns perform the following tasks:

1. Select the appropriate description for an entity or object. For instance, in the

sentence “The process starts when the female patient is examined by an out-
patient physician, who decides whether she is healthy or needs to undertake
an additional eramination” the results of the NLP semantic role labeling
step for Agent would return the whole subtree headed by physician (i.e. an
outpatient physician, who decides. . . ezamination).
The used Tregex patterns will strip down such a long description removing
the determiner and the relative clause, while keeping the core actor/object
and its main modifiers, thus extracting respectively outpatient physician
as a role, and female patient as a business object.

2. Next step is identifying relevant activities. The NLP preprocess detects all
predicates in the text (mainly, all verbs are considered a predicate, plus

”o»

some deverbal nouns such as "reception”, "meeting”, etc). However, although

many verbs in a process description may be predicates from a linguistic

perspective, they do not correspond to actual process activities. Thus, we

use a set of patterns that discard predicates unlikely to be describing a

relevant process task, or relabel them as condition or event fragments:

(a) More specifically, we use a set of predicates that check for syntactic
structures involving conditional clauses (if, whether, either, ...) and the
appropriate nodes in the tree are marked as condition fragments. In
this step, we determine, for instance, that she is healthy and needs
an additional examination are conditions in the sentence “... who
decides whether she is healthy or needs an additional examination.”.

(b) Another set of patterns deal with syntactic structures involving keywords
like when, once, as soon, whenever, etc, and mark the related predicates
as event fragments. These patterns allow us to identify the fragment
confirm(payment) as an event fragment in the sentence “Once the pay-
ment is confirmed, the ZooClub department can print the card...”

(c) A third batch of patterns takes care of discarding activities that are
not relevant to the process. To this end, we use two different strategies:
one is removing all activities related to auxiliary, control, or subjective
verbs (be, have, start, want, think, believe, etc.) which are unlikely to
describe an actual process task. The second strategy relies on removing
actions described in a subordinate clause. For instance, in the sentence
“..., the examination is prepared based on the information provided by
the outpatient section”, the verbs base and provide would be removed as
activities, since the main action described by this sentence is just prepare
(examination), and the subordinate clause just gives additional details
on the object or procedure, but not on the actual process activity.

. The last set of patterns deal with relations between activities. In our original
work we tackled only relations between two activities in the same sentence.
We considered different types of relations:

(a) Precedence: We use patterns to detect sentences relating one event
and one activity in a precedence relation. E.g. in the sentence “An
intaker keeps this registration with him at times when visiting the pa-
tient”, it would extract the sequential relation from visit (patient) to
keep(registration).

(b) Response: This relation is identified between condition and activity frag-
ments, which typically occur in conditional sentences such as “If the pa-
tient signs an informed consent, a delegate of the physician arranges an
appointment with one of the wards and updates the HIS selecting the first
available slot”. From this sentence, we would extract the relation that
arrange (appointment) responds to sign(consent).

(¢) Weak Order: There are many pairs of activities appearing in the same
sentence where some kind of sequential order can be deduced, but it
is not possible for an automatic system to determine their exact kind
of relation. In these cases, we take a conservative approach and extract

the least restrictive constraint, WeakOrder. For instance, in the sentence
“The Payment Office of SSP generates a payment report and then pays
the vendor”, we could extract that generate and pay are in WeakOrder.

(d) Conflict: Conflict relations can be determined between condition frag-
ments, provided they are in the right syntactic structure. In this way, we
can extract the constraint that the sample can not be safely used and
contaminated at the same time from the sentence “... decides whether the
sample can be used for analysis or whether it is contaminated”, or that
conditional fragments approve and deny from the sentence “The next
step is for the IT department to analyse the request and either approve
or deny it.” are considered in conflict.

4.2 Inter-Sentence Analysis

Patterns used in [9] for relation extraction summarized in Section aimed to
capture relations between two activities/events mentioned in the same sentence.
The main contribution of this paper is the extension of these patterns to capture
also relations between activities or events located in different sentences.

To achieve this goal, since TRegEx is able to handle a single tree at a time,
we first need to join together the syntactic trees for all sentences in the text in a
single tree. For this, we add two kinds of artificial parent nodes: A <PARAGRAPH>
node that has as children the root nodes for each of the sentences in the same
paragraph, and a <DOCUMENT> node that has as children all the <PARAGRAPH>
nodes. With that, we obtain a unique tree for all the document, and we can ap-
ply TRegEx patterns that span over more than one sentence. Figure |2/ shows an
example of a tree representing a short document. We apply patterns on the doc-
ument tree to extract conflict and sequence relations between activities, events,
or conditions detected in previous steps (see sec.)

Conflicts. Conflicts between activities in the same sentence are detected using
patterns described in [9]. The following patterns deal with conflicts between ac-
tivities in different sentences. Their goal is to instantiate in variables originRef
and destinationRef verbs that head sentences which may contain nodes marked
as <ACTIVITY> or <CONDITION> on which the relation will be extracted.

PC1 /verb/=originRef > /<PARAGRAPH>/
<< /<CONDITION>/
$. (/verb/=destinationRef << /<CONDITION>/)
PC2 /verb/=originRef > /<PARAGRAPH>/
<< /<CONDITION>/
$. (/verb/ !<< /<CONDITION>/
$. (/verb/=destinationRef << /<CONDITION>/))

Pattern PC1 checks for a verb directly under a <PARAGRAPH> (i.e. main sen-
tence verb) that has a condition as a child, and that its right sibling (i.e, main
verb in the following sentence) also has a condition. This would extract a conflict

PARAGRAPH
\

PARAGRAPH

arrive
verb
<ACTION>
send archive
‘ verb verb
request <ACTION> <ACTION>
noun
det : - - ;
if manager it to otherwise || secretary it
adv noun | pron prep adv noun pron
1 l \ L
accepted the sales the
verb det noun det
<CONDITION>
it is
pron || aux

Fig. 2. Document tree for a text with two paragraphs: The first one with the sentence
“A request arrives”, the second with two sentences: “If it is accepted, the manager sends
it to sales. Otherwise, the secretary archives it”. Nodes in the syntactic dependency
trees have been marked as <ACTION> or <CONDITION> in previous steps.

between proceed and repeat in the pair of sentences “If sample is ok, proceed with
examination. If contamination is detected, repeat sampling.” Pattern PC2 cap-
tures the same kind of structure, when there is an additional sentence without
a condition in between (e.g. “If sample is ok, proceed with examination. Fill out
treatment request form. If contamination is detected, repeat sampling.”)

Sequences. A second batch of patterns takes care of extracting sequence rela-
tions between activities in contiguous sentences. As in the case of conflicts, the
patterns instantiate the variables originRef and destinationRef to candidate
subtrees that are then searched for <ACTIVITY> or <CONDITION> nodes. Some
patterns directly instantiate the variable destination, the actual target of the
extracted relation.

PS1 /verb/=originRef > /<PARAGRAPH>/
$. (/verb/=destinationRef

< /afterwards|then|immediately/)

PS2 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << (/<CONDITION>/=destination << /or/))
PS3 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << (/or/ << /<CONDITION>/=destination))
PS4 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << /<CONDITION>/=destination

< /otherwisel|else/)
PS5 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << /<CONDITION>/
< (/otherwise|else/=destination)

Pattern PS1 extracts a sequence relation between the main verb of a sequence
and the main verb of the next one provided the latter has a modifier such as
afterwards, then, immediately, etc. Patterns PS2 and PS3 establish sequence re-
lations between an activity and or-ed conditions in the following sentence (e.g
extract sequences send— fill and send—reject in sentences “Send form to cus-
tomer. The customer can fill the form or reject to do it.”) Patterns PS4 and PS5
check a similar case, but where the second sentence has an ”if-else” structure.
They would extract the sequence relations send— accept and send— cancel in
the sentence “A budget is sent to the customer. If he accepts it, the bill is issued,
otherwise the operation s cancelled.”

5 Tool Support and Experiments

This section presents experiments evaluating the performance gain obtained
when including patterns to capture relations between activities or events lo-
cated in different sentences. We report two different results: First, we report
relations extraction performance using a baseline based on [9] where we extract
relations only for pairs in the same sentence. Second, we report results applying
patterns to extract both intra- and inter-sentence relations.

The evaluation is performed comparing the relations extracted against gold
standard manual annotations. For both table || and table |2} the test data set
used in our experiments are the same as that used in the original proposal [9],
which consists of 18 text-model pairs, each example includes a textual process
description paired with the corresponding BPMN models created by a human.

The first 13 models stem from material in the appendix of [3], and the last 5
from our academic datasetﬂ used in [I1].

As a gold reference for evaluation, we manually created one ATDP for each
example following the activities and relations in those BPMN models, i.e. mark-
ing as activity fragments only the text pieces that had a corresponding element
in the BPMN model and connecting only the activities fragments that had a
corresponding relation in the BPMN model.

® https://github.com/setzer22/alignment_model_text/tree/master/datasets/
NewDataset

https://github.com/setzer22/alignment_model_text/tree/master/datasets/NewDataset
https://github.com/setzer22/alignment_model_text/tree/master/datasets/NewDataset

Source Conflict Sequence

#gold #pred #ok P R Fi|#gold #pred #0ok P R I
1-1_bicycle_manufacturing 2 1 1100 50 67 59 8 6 7510 18
1-2_computer_repair 1 0 0 00O 59 9 7 781221
2-1_sla_violation 5 2 0 0 0 0 372 46 14 30 4 7
3-1-2009-1_mc_finalice_sct 0 0 0 0 0 O 52 4 3 75 611
3-2_2009-2_conduct 1 0 0 00O 20 8 4 5020 29
3-6_2010-1_claims_notification 2 0 0 0 0 O 63 9 7 7811 19
4-1_intaker_workflow 0 0 0 0 0 0 596 17 529 1 2
5-1_active_vos_tutorial 3 0 0 00O 15 4 3 7520 32
6-1_acme- 1 0 0 0 0 0] 340 22 11 50 3 6
7-1_calling_leads 1 0 0 0 0 O 13 2 1 50 813
8-1_hr_process_simple 0 0 0 0 0O 15 7 6 864055
9-2_exercise_2 3 0 0 0 0 O 11 6 6 100 55 71
10-2_process_b3 3 0 0 0 0 0 114 7 3 43 3 5
1081511532_rev3 1 0 0 00O 47 9 5 5611 18
1120589054 _rev4- 0 0 0 00O 66 9 6 67 916
1364308140_rev4 1 0 0 00O 21 8 4 5019 28
20818304 revl 3 2 2100 67 80 36 11 6 5517 26
784358570 _rev2 2 0 0 0 0 0] 126 11 6 55 5 9
TOTAL 29 5 3 601018 2025 197 103 52 5 9

Table 1. Evaluation of relation extraction using only intra-sentence patterns. Sequence
relations are evaluated on the transitive clausure of both the sets of gold annotations
and annotations produced by the system.

Intra-Sentence. Results for the first scenario (only intra-sentence patterns)
are shown in Table |l and correspond to results obtained using the patterns de-
scribed in [9], which rely on extracting relations just within sentences. Precision
is the percentage of right relations over predicted relations (P = #ok/#pred).
Recall is the percentage of expected relations extracted (R = #ok/#gold). Fy
score is the harmonic mean of precision and recall (Fy = 2PR/(P + R)). We
only count extracted relations as right if they match the gold annotations in
type (<SEQUENCE>, <CONFLICT>). In both experiments, sequence relations are
evaluated over the transitive closure of the sequence annotations.

Inter-Sentence. In the second evaluation scenario, in addition to patterns
created in [9], we use inter-sentence patterns described in Section

Obtained results presented in Table 2] show that our new contribution ex-
tracts more relations, thus obtaining a large boost in recall (from 0.05 to 0.70
overall) with a very mild loss of precision (from 0.52 to 0.50 overall). Recall is
boosted both for conflict and sequence relations, while precision is increased for
conflicts, but slightly decreased for sequences.

10

Source Conflict Sequence

#gold #pred #0k P R Fi|#gold #pred #0k P R Fi
1-1_bicycle_manufacturing 2 2 2 100 100 100 59 90 54 60 92 72
1-2_computer_repair 1 0O 0 0 0 O 59 65 33 51 56 53
2-1_sla_violation 5 4 2 50 40 44| 372 572 152 27 41 32
3-1.2009-1_mc_finalice 0 0O 0 0 0 o 52 57 42 74 81 77
3-2_2009-2_conduct 1 0O 0 0 0 o 20 33 19 58 95 72
3-6_2010-1_claims 2 1 1100 50 67 63 76 53 70 84 76
4-1_intaker_workflow 0 0 0 O O 0 596 906 455 50 76 61
5-1_active_vos_tutorial 3 3 3100 100 100 15 16 12 75 80 77
6-1_acme- 1 0 0 0O O 0] 340 561 287 48 84 61
7-1_calling_leads 1 1 1100 100 100 13 41 13 32100 48
8-1_hr_process_simple 0 0O 0 0 0 o 15 21 15 71100 83
9-2_exercise_2 3 6 3 50100 67 11 10 990 82 86
10-2_process_b3 3 1 1100 33 50/ 114 138 83 60 73 66
1081511532_rev3 1 1 1100 100 100 47 41 30 73 64 68
1120589054 _rev4 0 0O 0 0 0 o 66 78 66 85100 92
1364308140_rev4 1 0O 0 0 0 o 21 26 10 38 48 43
20818304 _revl 3 3 3100 100 100 36 29 19 66 53 58
784358570 rev2 2 3 2 67100 80| 126 118 85 72 67 70
TOTAL 29 25 19 76 66 70| 2025 2878 143749 7159

Table 2. Evaluation of relation extraction using both intra- and inter- sentence pat-
terns. Sequence relations are evaluated on the transitive clausure of both the sets of
gold annotations and annotations produced by the system.

6 Conclusions and Future Work

We have presented an extension of our work in [9], consisting in adding syntax-
tree based patterns to capture relations between activities or events located in
different sentences. Results show that crossing the sentence boundaries is a highly
productive strategy, since many more relations can be extracted. Also, the fact
of using syntax-aware patterns, and not just flat regular expressions allows this
extension to be done with almost no loss of precision.

Acknowledgments This work has been supported by MINECO and FEDER
funds under grant TIN2017-86727-C2-1-R, and by the Ecuadorian National Sec-
retary of Higher Education, Science and Technology (SENESCYT).

References

1. Jo&o Carlos de A. R. Gongalves, Flavia Maria Santoro, and Fernanda Araujo Baido.
Business process mining from group stories. In Proceedings of the 13th International
Conference on Computers Supported Cooperative Work in Design, CSCWD 2009,
April 22-24, 2009, Santiago, Chile, pages 161-166. IEEE, 2009.

2. Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on
LTL on finite traces: Insensitivity to infiniteness. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 1027-1033. AAATI Press, 2014.

11

10.

11.

12.

13.

14.

15.

. Fabian Friedrich. Automated generation of business process models from natural

language input. School of Business and Economics. Humboldt-Universitdt, 2010.

. Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model genera-

tion from natural language text. In Haralambos Mouratidis and Colette Rolland,
editors, Advanced Information Systems Engineering, pages 482-496, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

. Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear

dynamic logic on finite traces. In IJCAI, 2013.

. Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for querying and

manipulating tree data structures. In LREC, pages 2231-2234. Citeseer, 2006.

. Hugo A. Lépez, Sgren Debois, Thomas T. Hildebrandt, and Morten Marquard. The

process highlighter: From texts to declarative processes and back. In Proceedings
of the Dissertation Award, Demonstration, and Industrial Track at BPM 2018
co-located with 16th International Conference on Business Process Management
(BPM 2018), Sydney, Australia, September 9-14, 2018, pages 66-70, 2018.

. Lluis Padré and Evgeny Stanilovsky. Freeling 3.0: Towards wider multilinguality.

In Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC), pages 2473-2479, 2012.

. Luis Quishpi, Josep Carmona, and Lluis Padré. Extracting annotations from tex-

tual descriptions of processes. In Proceedings of 18th International Conference
on Business Process Management (BPM 2020), Sevilla, Spain, September 13-18,
2020, pages 66-70, 2020.

Josep Sanchez-Ferreres, Andrea Burattin, Josep Carmona, Marco Montali, and
Llufs Padré. Formal reasoning on natural language descriptions of processes. In
Int. Conference on Business Process Management, pages 86—-101. Springer, 2019.

Josep Sanchez-Ferreres, Han van der Aa, Josep Carmona, and Lluis Padré. Aligning
textual and model-based process descriptions. Data ¢ Knowledge Engineering,
118:25-40, 2018.

Han van der Aa, Josep Carmona, Henrik Leopold, Jan Mendling, and Lluis Padré.
Challenges and opportunities of applying natural language processing in business
process management. In Proceedings of the 27th International Conference on Com-
putational Linguistics (COLING), pages 2791-2801, 2018.

Han van der Aa, Claudio Di Ciccio, Henrik Leopold, and Hajo A Reijers. Extracting
declarative process models from natural language. In International Conference on
Advanced Information Systems Engineering, pages 365-382. Springer, 2019.

Han van der Aa, Henrik Leopold, and Hajo A. Reijers. Dealing with behavioral
ambiguity in textual process descriptions. In Marcello La Rosa, Peter Loos, and
Oscar Pastor, editors, Business Process Management - 14th International Con-
ference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings,
volume 9850 of Lecture Notes in Computer Science, pages 271-288. Springer, 2016.
Wil M.P. van der Aalst. Process Mining. Springer, second edition, 2016.

12

	Improving the Extraction of Process Annotations from Text with Inter-Sentence Analysis

