Abstract
Comparing observed behavior (event data generated during process executions) with modeled behavior (process models), is an essential step in process mining analyses. Alignments are the de-facto standard technique for calculating conformance checking statistics. However, the calculation of alignments is computationally complex since a shortest path problem must be solved on a state space which grows non-linearly with the size of the model and the observed behavior, leading to the well-known state space explosion problem. In this paper, we present a novel framework to approximate alignments on process trees by exploiting their hierarchical structure. Process trees are an important process model formalism used by state-of-the-art process mining techniques such as the inductive mining approaches. Our approach exploits structural properties of a given process tree and splits the alignment computation problem into smaller sub-problems. Finally, sub-results are composed to obtain an alignment. Our experiments show that our approach provides a good balance between accuracy and computation time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)
Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7
Lee, W.L.J., Verbeek, H.M.W., Munoz-Gama, J., van der Aalst, W.M.P., Sepúlveda, M.: Recomposing conformance: closing the circle on decomposed alignment-based conformance checking in process mining. Inf. Sci. 466, 55–91 (2018)
Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking approximation using subset selection and edit distance. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 234–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_15
Taymouri, F., Carmona, J.: An evolutionary technique to approximate multiple optimal alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_13
Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments. In: SIMPDA 2016, vol. 1757 (2016). CEUR-WS.org
Bauer, M., van der Aa, H., Weidlich, M.: Estimating process conformance by trace sampling and result approximation. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 179–197. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_13
Leemans, S.J.J.: Robust process mining with guarantees. Ph.D. dissertation, Department of Mathematics and Computer Science (2017)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6
Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of hierarchical process models. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 417–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1_25
Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. dissertation, Eindhoven University of Technology (2014)
Dongen, B.F.: Efficiently computing alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 197–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_12
van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and observed behavior: a compromise between computation complexity and quality. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_7
van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic approach. Distrib. Parallel Databases, 31(4), 471–507 (2013)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet physics doklady, vol. 10, no. 8 (1966)
van Dongen, B.F.: BPI Challenge 2019. Dataset (2019)
van Dongen, B.F., Borchert, F.: BPI Challenge 2018. Dataset (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Schuster, D., van Zelst, S., van der Aalst, W.M.P. (2021). Alignment Approximation for Process Trees. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-72693-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72692-8
Online ISBN: 978-3-030-72693-5
eBook Packages: Computer ScienceComputer Science (R0)