Abstract
Many algorithms now exist for discovering process models from event logs. These models usually describe a control flow and are intended for use by people in analysing and improving real-world organizational processes. The relative likelihood of choices made while following a process (i.e., its stochastic behaviour) is highly relevant information which few existing algorithms make available in their automatically discovered models. This can be addressed by automatically discovered stochastic process models.
We introduce a framework for automatic discovery of stochastic process models, given a control-flow model and an event log. The framework introduces an estimator which takes a Petri net model and an event log as input, and outputs a Generalized Stochastic Petri net. We apply the framework, adding six new weight estimators, and a method for their evaluation. The algorithms have been implemented in the open-source process mining framework ProM. Using stochastic conformance measures, the resulting models have comparable conformance to existing approaches and are shown to be calculated more efficiently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code is accessible via https://github.com/adamburkegh/spd_we.
References
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. DMKD 2(2), 182–192 (2012)
van der Aalst, W.: Academic view: development of the process mining discipline. In: Reinkemeyer, L. (eds.) Process Mining in Action, pp. 181–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-6_21
van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Marsan, M.A., et al.: The effect of execution policies on the semantics and analysis of stochastic Petri nets. TSE 15(7), 832–846 (1989)
Alharbi, A.M.: Unsupervised abstraction for reducing the complexity of healthcare process models. Ph.D. thesis, University of Leeds, July 2019
Anastasiou, N., Knottenbelt, W.: Deriving coloured generalised stochastic Petri net performance models from high-precision location tracking data. In: PE 2013, pp. 375–386 (2013)
Augusto, A., et al.: Split miner: automated discovery of accurate and simple business process models from event logs. KIS 59, 251–284 (2019). https://doi.org/10.1007/s10115-018-1214-x
Bause, F., Kritzinger, P.S.: Stochastic Petri Nets: An Introduction to the Theory. Vieweg+Teubner Verlag (2002)
Bernardi, S., et al.: A systematic approach for performance evaluation using process mining: the POSIDONIA operations case study. In: QUDOS 2016, pp. 24–29 (2016)
vanden Broucke, S.K.L.M., et al.: Fodina: a robust and flexible heuristic process discovery technique. DSS 100, 109–118 (2017)
Burke, A., et al.: Report on stochastic process discovery by weight estimation experimental results. Technical report, September 2020. https://eprints.qut.edu.au/204662/
Carrera, B., Jung, J.-Y.: Constructing probabilistic process models based on hidden Markov models for resource allocation. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 477–488. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_41
van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25
Gruhn, V., Laue, R.: Adopting the cognitive complexity measure for business process models. In: CI 2006, pp. 236–241 (2006)
Hu, H., Xie, J., Hu, H.: A novel approach for mining stochastic process model from workflow logs. JCIS 7(9), 3113–3126 (2011)
Kalenkova, A., Polyvyanyy, A., La Rosa, M.: A framework for estimating simplicity of automatically discovered process models based on structural and behavioral characteristics. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 129–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_8
Kluza, K., Nalepa, G.J., Lisiecki, J.: Square complexity metrics for business process models. In: Mach-Król, M., Pełech-Pilichowski, T. (eds.) Advances in Business ICT. AISC, vol. 257, pp. 89–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03677-9_6
Leclercq, E., et al.: Identification of timed stochastic Petri net models with normal distributions of firing periods. IFAC 13(4), 948–953 (2009)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8
Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware conformance checking: an entropy-based approach. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 217–233. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_14
Chuang, L.I.N., Yang, Q.U., Fengyuan, R.E.N., Marinescu, D.C.: Performance equivalent analysis of workflow systems based on stochastic Petri net models. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 64–79. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45785-2_5
Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic conformance checking based on declarative process models. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020. LNBIP, vol. 386, pp. 86–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58135-0_8
Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_4
Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_2
Rogge-Solti, A., et al.: Prediction of business process durations using non-Markovian stochastic Petri nets. IS 54, 1–14 (2015)
Senderovich, A., et al.: Data-driven performance analysis of scheduled processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 35–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_3
Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A., van der Aalst, W.M.P.: Discovering queues from event logs with varying levels of information. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 154–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_13
Tsironis, L.C., et al.: Fuzzy performance evaluation of workflow stochastic Petri nets by means of block reduction. ToS 40(2), 352–362 (2010)
Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: CIDM 2011, pp. 310–317 (2011)
Acknowledgement
Computational resources used included those provided by the eResearch Office at QUT.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Burke, A., Leemans, S.J.J., Wynn, M.T. (2021). Stochastic Process Discovery by Weight Estimation. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-72693-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72692-8
Online ISBN: 978-3-030-72693-5
eBook Packages: Computer ScienceComputer Science (R0)