Abstract
In healthcare, more and more process execution information is stored in Hospital Information Systems. This data, in conjunction with data-driven process simulation, can be used, e.g. to support hospital management with Capacity Management decisions. However, real-life event logs in healthcare often suffer from data quality issues, affecting the reliability of simulation results. In this work, we illustrate the effects of disregarding data quality issues on simulation outcomes and the importance of domain knowledge using a case study at the radiology department of a hospital. Current literature on data-driven process simulation acknowledges the need for domain expertise but does not provide a framework for conceptualising the involvement of domain experts. Therefore, we propose a novel conceptual framework which interactively involves experts during data-driven simulation model development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrews, R., Suriadi, S., Ouyang, C., Poppe, E.: Towards event log querying for data quality. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 116–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02610-3_7
Arena: Rockwell Automation, Inc. (2016). https://www.arenasimulation.com/
Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_17
Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001). https://doi.org/10.1214/aos/1013699998
Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results? It’s high time we consider data quality issues seriously. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining, pp. 127–134 (2013). https://doi.org/10.1109/CIDM.2013.6597227
Camargo, M., Dumas, M., González-Rojas, O.: Automated discovery of business process simulation models from event logs. Decis. Support Syst. 134, 113284 (2020). https://doi.org/10.1016/j.dss.2020.113284
Carmen, R., Defraeye, M., Van Nieuwenhuyse, I.: A decision support system for capacity planning in emergency departments. Int. J. Simul. Model 14(2), 299–312 (2015). https://doi.org/10.2507/ijsimm14(2)10.308
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882
Depaire, B., Martin, N.: Data-driven process simulation. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8_102-1
Di Francescomarino, C., Ghidini, C., Tessaris, S., Sandoval, I.V.: Completing workflow traces using action languages. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 314–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_20
Dixit, P.M., et al.: Detection and interactive repair of event ordering imperfection in process logs. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 274–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_17
Fox, F., Aggarwal, V.R., Whelton, H., Johnson, O.A.: A data quality framework for process mining of electronic health record data. In: Proceedings of the 2018 IEEE International Conference on Healthcare Informatics, pp. 12–21 (2018). https://doi.org/10.1109/ICHI.2018.00009
Gawin, B., Marcinkowski, B.: How close to reality is the “as-is” business process simulation model? Organizacija 48(3), 155–175 (2015). https://doi.org/10.1515/orga-2015-0013
Hicks, C., McGovern, T., Prior, G., Smith, I.: Applying lean principles to the design of healthcare facilities. Int. J. Prod. Econ. 170, 677–686 (2015). https://doi.org/10.1016/j.ijpe.2015.05.029
Johnson, O.A., Ba Dhafari, T., Kurniati, A., Fox, F., Rojas, E.: The ClearPath method for care pathway process mining and simulation. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 239–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_19
Khodyrev, I., Popova, S.: Discrete modeling and simulation of business processes using event logs. In: Proceedings of the 14th International Conference on Computational Science. Procedia Comput. Sci. 29, 322–331 (2014). https://doi.org/10.1016/j.procs.2014.05.029
Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill Education, New York (2014)
Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare: Evaluating and Exploiting Operational Healthcare Processes. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16071-9
Martin, N., Depaire, B., Caris, A.: The use of process mining in business process simulation model construction. Bus. Inf. Syst. Eng. 58(1), 73–87 (2015). https://doi.org/10.1007/s12599-015-0410-4
Martin, N., Van Houdt, G., Janssenswillen, G.: Towards more structured data quality assessment in the process mining field: the DaQAPO package. In: Proceedings of the European R Users Meeting (2020)
Melão, N., Pidd, M.: Use of business process simulation: a survey of practitioners. J. Oper. Res. Soc. 54(1), 2–10 (2003). https://doi.org/10.1057/palgrave.jors.2601477
Neuhäuser, M.: Wilcoxon-Mann-Whitney test. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1656–1658. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-04898-2_615
Rebuge, Á., Ferreira, D.M.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012). https://doi.org/10.1016/j.is.2011.01.003
Rozinat, A., Mans, R.S., van der Aalst, W.M.P.: Mining CPN models: discovering process models with data from event logs. In: Proceedings of the 7th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. DAIMI PB, vol. 579, pp. 57–76 (2006)
Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009). https://doi.org/10.1016/j.is.2008.09.002
Salleh, S., Thokala, P., Brennan, A., Hughes, R., Booth, A.: Simulation modelling in healthcare: an umbrella review of systematic literature reviews. Pharmacoeconomics 35(9), 937–949 (2017). https://doi.org/10.1007/s40273-017-0523-3
Shakoor, M.: Using discrete event simulation approach to reduce waiting times in computed tomography radiology department. Int. J. Ind. Manuf. Eng. 9(1), 177–181 (2015). https://doi.org/10.5281/zenodo.1338044
Smith-Daniels, V.L., Schweikhart, S.B., Smith-Daniels, D.E.: Capacity management in health care services: review and future research directions. Decis. Sci. 19(4), 889–919 (1988). https://doi.org/10.1111/j.1540-5915.1988.tb00310.x
Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017). https://doi.org/10.1016/j.is.2016.07.011
VanBerkel, P.T., Blake, J.T.: A comprehensive simulation for wait time reduction and capacity planning applied in general surgery. Health Care Manag. Sci. 10(4), 373–385 (2007). https://doi.org/10.1007/s10729-007-9035-6
Vanbrabant, L., Martin, N., Ramaekers, K., Braekers, K.: Quality of input data in emergency department simulations: framework and assessment techniques. Simul. Model. Pract. Theory 91, 83–101 (2019). https://doi.org/10.1016/j.simpat.2018.12.002
Vieira, B., Hans, E.W., van Vliet-Vroegindeweij, C., van de Kamer, J., van Harten, W.: Operations research for resource planning and-use in radiotherapy: a literature review. BMC Med. Inform. Decis. Mak. 16(1) (2016). Article number: 149. https://doi.org/10.1186/s12911-016-0390-4
Zhang, X.: Application of discrete event simulation in health care: a systematic review. BMC Health Serv. Res. 18(1), 687 (2018). https://doi.org/10.1186/s12913-018-3456-4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
van Hulzen, G., Martin, N., Depaire, B. (2021). The Need for Interactive Data-Driven Process Simulation in Healthcare: A Case Study. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-72693-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72692-8
Online ISBN: 978-3-030-72693-5
eBook Packages: Computer ScienceComputer Science (R0)