Skip to main content

The Need for Interactive Data-Driven Process Simulation in Healthcare: A Case Study

  • Conference paper
  • First Online:
Process Mining Workshops (ICPM 2020)

Abstract

In healthcare, more and more process execution information is stored in Hospital Information Systems. This data, in conjunction with data-driven process simulation, can be used, e.g. to support hospital management with Capacity Management decisions. However, real-life event logs in healthcare often suffer from data quality issues, affecting the reliability of simulation results. In this work, we illustrate the effects of disregarding data quality issues on simulation outcomes and the importance of domain knowledge using a case study at the radiology department of a hospital. Current literature on data-driven process simulation acknowledges the need for domain expertise but does not provide a framework for conceptualising the involvement of domain experts. Therefore, we propose a novel conceptual framework which interactively involves experts during data-driven simulation model development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, R., Suriadi, S., Ouyang, C., Poppe, E.: Towards event log querying for data quality. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 116–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02610-3_7

    Chapter  Google Scholar 

  2. Arena: Rockwell Automation, Inc. (2016). https://www.arenasimulation.com/

  3. Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_17

    Chapter  Google Scholar 

  4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001). https://doi.org/10.1214/aos/1013699998

    Article  MathSciNet  MATH  Google Scholar 

  5. Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results? It’s high time we consider data quality issues seriously. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining, pp. 127–134 (2013). https://doi.org/10.1109/CIDM.2013.6597227

  6. Camargo, M., Dumas, M., González-Rojas, O.: Automated discovery of business process simulation models from event logs. Decis. Support Syst. 134, 113284 (2020). https://doi.org/10.1016/j.dss.2020.113284

    Article  Google Scholar 

  7. Carmen, R., Defraeye, M., Van Nieuwenhuyse, I.: A decision support system for capacity planning in emergency departments. Int. J. Simul. Model 14(2), 299–312 (2015). https://doi.org/10.2507/ijsimm14(2)10.308

    Article  Google Scholar 

  8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  9. Depaire, B., Martin, N.: Data-driven process simulation. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8_102-1

    Chapter  Google Scholar 

  10. Di Francescomarino, C., Ghidini, C., Tessaris, S., Sandoval, I.V.: Completing workflow traces using action languages. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 314–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_20

    Chapter  Google Scholar 

  11. Dixit, P.M., et al.: Detection and interactive repair of event ordering imperfection in process logs. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 274–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_17

    Chapter  Google Scholar 

  12. Fox, F., Aggarwal, V.R., Whelton, H., Johnson, O.A.: A data quality framework for process mining of electronic health record data. In: Proceedings of the 2018 IEEE International Conference on Healthcare Informatics, pp. 12–21 (2018). https://doi.org/10.1109/ICHI.2018.00009

  13. Gawin, B., Marcinkowski, B.: How close to reality is the “as-is” business process simulation model? Organizacija 48(3), 155–175 (2015). https://doi.org/10.1515/orga-2015-0013

    Article  Google Scholar 

  14. Hicks, C., McGovern, T., Prior, G., Smith, I.: Applying lean principles to the design of healthcare facilities. Int. J. Prod. Econ. 170, 677–686 (2015). https://doi.org/10.1016/j.ijpe.2015.05.029

    Article  Google Scholar 

  15. Johnson, O.A., Ba Dhafari, T., Kurniati, A., Fox, F., Rojas, E.: The ClearPath method for care pathway process mining and simulation. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 239–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_19

    Chapter  Google Scholar 

  16. Khodyrev, I., Popova, S.: Discrete modeling and simulation of business processes using event logs. In: Proceedings of the 14th International Conference on Computational Science. Procedia Comput. Sci. 29, 322–331 (2014). https://doi.org/10.1016/j.procs.2014.05.029

  17. Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill Education, New York (2014)

    Google Scholar 

  18. Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare: Evaluating and Exploiting Operational Healthcare Processes. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16071-9

    Book  Google Scholar 

  19. Martin, N., Depaire, B., Caris, A.: The use of process mining in business process simulation model construction. Bus. Inf. Syst. Eng. 58(1), 73–87 (2015). https://doi.org/10.1007/s12599-015-0410-4

    Article  Google Scholar 

  20. Martin, N., Van Houdt, G., Janssenswillen, G.: Towards more structured data quality assessment in the process mining field: the DaQAPO package. In: Proceedings of the European R Users Meeting (2020)

    Google Scholar 

  21. Melão, N., Pidd, M.: Use of business process simulation: a survey of practitioners. J. Oper. Res. Soc. 54(1), 2–10 (2003). https://doi.org/10.1057/palgrave.jors.2601477

    Article  MATH  Google Scholar 

  22. Neuhäuser, M.: Wilcoxon-Mann-Whitney test. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1656–1658. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-04898-2_615

    Chapter  Google Scholar 

  23. Rebuge, Á., Ferreira, D.M.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012). https://doi.org/10.1016/j.is.2011.01.003

    Article  Google Scholar 

  24. Rozinat, A., Mans, R.S., van der Aalst, W.M.P.: Mining CPN models: discovering process models with data from event logs. In: Proceedings of the 7th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. DAIMI PB, vol. 579, pp. 57–76 (2006)

    Google Scholar 

  25. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009). https://doi.org/10.1016/j.is.2008.09.002

    Article  Google Scholar 

  26. Salleh, S., Thokala, P., Brennan, A., Hughes, R., Booth, A.: Simulation modelling in healthcare: an umbrella review of systematic literature reviews. Pharmacoeconomics 35(9), 937–949 (2017). https://doi.org/10.1007/s40273-017-0523-3

    Article  Google Scholar 

  27. Shakoor, M.: Using discrete event simulation approach to reduce waiting times in computed tomography radiology department. Int. J. Ind. Manuf. Eng. 9(1), 177–181 (2015). https://doi.org/10.5281/zenodo.1338044

    Article  MathSciNet  Google Scholar 

  28. Smith-Daniels, V.L., Schweikhart, S.B., Smith-Daniels, D.E.: Capacity management in health care services: review and future research directions. Decis. Sci. 19(4), 889–919 (1988). https://doi.org/10.1111/j.1540-5915.1988.tb00310.x

    Article  Google Scholar 

  29. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017). https://doi.org/10.1016/j.is.2016.07.011

    Article  Google Scholar 

  30. VanBerkel, P.T., Blake, J.T.: A comprehensive simulation for wait time reduction and capacity planning applied in general surgery. Health Care Manag. Sci. 10(4), 373–385 (2007). https://doi.org/10.1007/s10729-007-9035-6

    Article  Google Scholar 

  31. Vanbrabant, L., Martin, N., Ramaekers, K., Braekers, K.: Quality of input data in emergency department simulations: framework and assessment techniques. Simul. Model. Pract. Theory 91, 83–101 (2019). https://doi.org/10.1016/j.simpat.2018.12.002

    Article  Google Scholar 

  32. Vieira, B., Hans, E.W., van Vliet-Vroegindeweij, C., van de Kamer, J., van Harten, W.: Operations research for resource planning and-use in radiotherapy: a literature review. BMC Med. Inform. Decis. Mak. 16(1) (2016). Article number: 149. https://doi.org/10.1186/s12911-016-0390-4

  33. Zhang, X.: Application of discrete event simulation in health care: a systematic review. BMC Health Serv. Res. 18(1), 687 (2018). https://doi.org/10.1186/s12913-018-3456-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhardus van Hulzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Hulzen, G., Martin, N., Depaire, B. (2021). The Need for Interactive Data-Driven Process Simulation in Healthcare: A Case Study. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72693-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72692-8

  • Online ISBN: 978-3-030-72693-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics