Skip to main content

Unsupervised Event Abstraction in a Process Mining Context: A Benchmark Study

  • Conference paper
  • First Online:
Process Mining Workshops (ICPM 2020)

Abstract

Due to the rise of IoT, event data becomes increasingly fine-grained. Faced with such data, process discovery often produces incomprehensible spaghetti-models expressed at a granularity level that doesn’t match the mental model of a business user. One approach is to use event abstraction patterns to transform the event log towards a more coarse-grained level and to discover process models from this transformed log. Recent literature has produced various (partial) implementations of this approach, but insights how these techniques compare against each other is still limited.

This paper focuses on the use of Local Process Models and Combination based Behavioural Pattern Mining to discover event abstraction patterns in combination with the approach of Mannhardt et al. [15] to transform the event log. Experiments are conducted to gain insights into the performance of these techniques. Results are very limited with a general decrease in fitness and precision and only a minimal improvement of complexity. Results also show that the combination of the process discovery algorithm and the event abstraction pattern miner matters. In particular, the combination of Local Process Models with Split Miner seems to improve precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is done via the R package understandBPMN [13].

  2. 2.

    The event logs were extracted from the 4TU Centre for Research Data in May 2020.

  3. 3.

    Done via the convert BPMN diagram to Petri Net (Control Flow) plug-in in ProM.

  4. 4.

    https://github.com/gregvanhoudt/UnsupervisedEventAbstraction.

References

  1. Van der Aalst, W.: Process Mining: Data Science in Action, pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1

    Book  Google Scholar 

  2. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  3. Acheli, M., Grigori, D., Weidlich, M.: Efficient discovery of compact maximal behavioral patterns from event logs. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 579–594. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_36

    Chapter  Google Scholar 

  4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.: Conformance checking using cost-based fitness analysis. In: 2011 IEEE 15th International Enterprise Distributed Object Computing Conference, pp. 55–64. IEEE (2011)

    Google Scholar 

  5. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.: Measuring precision of modeled behavior. Inf. Syst. e-bus. Manag. 13(1), 37–67 (2015)

    Article  Google Scholar 

  6. Alharbi, A., Bulpitt, A., Johnson, O.A.: Towards Unsupervised Detection of Process Models in Healthcare. Studies in Health Technology and Informatics, pp. 381–385. IOS Press, Netherlands (2018)

    Google Scholar 

  7. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

    Article  Google Scholar 

  8. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_12

    Chapter  Google Scholar 

  9. Brunings, M., Fahland, D., van Dongen, B.: Defining meaningful local process models. In: Proceedings of the International Workshop on Algorithms and Theories for the Analysis of Event Data 2020. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2625/paper-01.pdf

  10. Folino, F., Guarascio, M., Pontieri, L.: Mining multi-variant process models from low-level logs. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 165–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19027-3_14

    Chapter  Google Scholar 

  11. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9_13

    Chapter  Google Scholar 

  12. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation exploration with inductive visual miner. In: Limonad, L., Weber, B. (eds.) Business Process Management Demo Sessions (BPMD 2014). CEUR Workshop Proceedings, vol. 1295, pp. 46–50. Eindhoven, The Netherlands. CEUR-WS.org (2014)

    Google Scholar 

  13. Lieben, J., Jouck, T., Depaire, B., Jans, M.: An improved way for measuring simplicity during process discovery. In: Pergl, R., Babkin, E., Lock, R., Malyzhenkov, P., Merunka, V. (eds.) EOMAS 2018. LNBIP, vol. 332, pp. 49–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00787-4_4

    Chapter  Google Scholar 

  14. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_8

    Chapter  Google Scholar 

  15. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M., Toussaint, P.J.: Guided process discovery-a pattern-based approach. Inf. Syst. 76, 1–18 (2018)

    Article  Google Scholar 

  16. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction and local process models. In: Gulden, J., et al. (eds.) CEUR Workshop Proceedings, vol. 1859, pp. 55–63. CEUR-WS.org (2017)

    Google Scholar 

  17. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness, vol. 6. Springer Science & Business Media (2008)

    Google Scholar 

  18. Rehse, J.-R., Fettke, P.: Clustering business process activities for identifying reference model components. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 5–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_1

    Chapter  Google Scholar 

  19. Sánchez-Charles, D., Carmona, J., Muntés-Mulero, V., Solé, M.: Reducing event variability in logs by clustering of word embeddings. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 191–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0_14

    Chapter  Google Scholar 

  20. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The ROAD from sensor data to process instances via interaction mining. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_16

    Chapter  Google Scholar 

  21. Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M., Norre, S.: Interest-driven discovery of local process models. Inf. Syst. 77, 105–117 (2018)

    Article  Google Scholar 

  22. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56994-9_18

    Chapter  Google Scholar 

  23. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)

    Article  Google Scholar 

  24. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25

    Chapter  Google Scholar 

  25. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in process mining: literature review and taxonomy. Granular Comput. 1–18 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Van Houdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Houdt, G., Depaire, B., Martin, N. (2021). Unsupervised Event Abstraction in a Process Mining Context: A Benchmark Study. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72693-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72692-8

  • Online ISBN: 978-3-030-72693-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics