Skip to main content

Predicting Remaining Cycle Time from Ongoing Cases: A Survival Analysis-Based Approach

  • Conference paper
  • First Online:
Process Mining Workshops (ICPM 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 406))

Included in the following conference series:

Abstract

Predicting the remaining cycle time of running cases is one important use case of predictive process monitoring. Different approaches that learn from event logs, e.g., relying on an existing representation of the process or leveraging machine learning approaches, have been proposed in literature to tackle this problem. Machine learning-based techniques have shown superiority over other techniques with respect to the accuracy of the prediction as well as freedom from knowledge about the underlying process models generating the logs. However, all proposed approaches learn from complete traces. This might cause delays in starting new training cycles as usually process instances might last over long time periods of hours, days, weeks or even months.

In this paper, we propose a machine learning approach that can learn from incomplete ongoing traces. Using a time-aware survival analysis technique, we can train a neural network to predict the remaining cycle time of a running case. Our approach accepts as input both complete and incomplete traces. We have evaluated our approach on different real-life datasets and compared it with a state of the art baseline. Results show that our approach, in many cases, is able to outperform the baseline approach both in accuracy and training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.17632/39bp3vv62t.1

  2. 2.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

  3. 3.

    https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

  4. 4.

    The choice of 50% as a fixed ratio for complete/incomplete traces is to reduce the variables in the experiments for better comparison.

References

  1. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18

    Chapter  Google Scholar 

  2. Klein, J.P., Moeschberger, M.L.: Survival Analysis: Techniques for Censored and Truncated Data. Springer, New York (2006). https://doi.org/10.1007/978-1-4757-2728-9

  3. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2013). https://doi.org/10.1007/s10115-013-0697-8

    Article  Google Scholar 

  4. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  5. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  6. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. In: SCC, pp. 1–8. IEEE Computer Society (2017)

    Google Scholar 

  7. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)

    Article  Google Scholar 

  8. Martinsson, E.: WTTE-RNN: Weibull time to event recurrent neural network. Ph.D. thesis, Chalmers University of Technology & University of Gothenburg (2016)

    Google Scholar 

  9. Polato, M., Sperduti, A., Burattin, A., Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018). https://doi.org/10.1007/s00607-018-0593-x

    Article  MathSciNet  Google Scholar 

  10. Rodrıguez, G.: Parametric survival models. Princeton University, Rapport technique, Princeton (2010)

    Google Scholar 

  11. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  12. Senderovich, A., Di Francescomarino, C., Maggi, F.M.: From knowledge-driven to data-driven inter-case feature encoding in predictive process monitoring. Inf. Syst. 84, 255–264 (2019)

    Article  Google Scholar 

  13. StataCorp LLC: Stata survival analysis reference manual (2017)

    Google Scholar 

  14. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  15. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  16. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0_22

    Chapter  Google Scholar 

  17. Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Trans. TIST 10(4), 1–34 (2019)

    Article  Google Scholar 

  18. Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: a white-box approach based on process models. J. Softw. Evol. Process. 31(6) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baskharon, F., Awad, A., Di Francescomarino, C. (2021). Predicting Remaining Cycle Time from Ongoing Cases: A Survival Analysis-Based Approach. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72693-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72692-8

  • Online ISBN: 978-3-030-72693-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics