Abstract
Predicting the remaining cycle time of running cases is one important use case of predictive process monitoring. Different approaches that learn from event logs, e.g., relying on an existing representation of the process or leveraging machine learning approaches, have been proposed in literature to tackle this problem. Machine learning-based techniques have shown superiority over other techniques with respect to the accuracy of the prediction as well as freedom from knowledge about the underlying process models generating the logs. However, all proposed approaches learn from complete traces. This might cause delays in starting new training cycles as usually process instances might last over long time periods of hours, days, weeks or even months.
In this paper, we propose a machine learning approach that can learn from incomplete ongoing traces. Using a time-aware survival analysis technique, we can train a neural network to predict the remaining cycle time of a running case. Our approach accepts as input both complete and incomplete traces. We have evaluated our approach on different real-life datasets and compared it with a state of the art baseline. Results show that our approach, in many cases, is able to outperform the baseline approach both in accuracy and training time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
The choice of 50% as a fixed ratio for complete/incomplete traces is to reduce the variables in the experiments for better comparison.
References
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18
Klein, J.P., Moeschberger, M.L.: Survival Analysis: Techniques for Censored and Truncated Data. Springer, New York (2006). https://doi.org/10.1007/978-1-4757-2728-9
Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2013). https://doi.org/10.1007/s10115-013-0697-8
Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21
Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31
Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. In: SCC, pp. 1–8. IEEE Computer Society (2017)
Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)
Martinsson, E.: WTTE-RNN: Weibull time to event recurrent neural network. Ph.D. thesis, Chalmers University of Technology & University of Gothenburg (2016)
Polato, M., Sperduti, A., Burattin, A., Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018). https://doi.org/10.1007/s00607-018-0593-x
Rodrıguez, G.: Parametric survival models. Princeton University, Rapport technique, Princeton (2010)
Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27
Senderovich, A., Di Francescomarino, C., Maggi, F.M.: From knowledge-driven to data-driven inter-case feature encoding in predictive process monitoring. Inf. Syst. 84, 255–264 (2019)
StataCorp LLC: Stata survival analysis reference manual (2017)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)
van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0_22
Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Trans. TIST 10(4), 1–34 (2019)
Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: a white-box approach based on process models. J. Softw. Evol. Process. 31(6) (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Baskharon, F., Awad, A., Di Francescomarino, C. (2021). Predicting Remaining Cycle Time from Ongoing Cases: A Survival Analysis-Based Approach. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-72693-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72692-8
Online ISBN: 978-3-030-72693-5
eBook Packages: Computer ScienceComputer Science (R0)