Abstract
Radiographs of the hand are useful in diagnosing and staging diseases such as rheumatoid arthritis (RA) and other musculoskeletal diseases. Radiographs are projections of the 3D anatomy, with the useful information such as pose and pathology becoming lost in the process. We propose a 3D hand pose recovery method for radiographs of hands using a novel hybrid image registration method. Our pose recovery pipeline consists of aligning a simulated X-ray (digitally reconstructed radiograph) of an articulated phantom mesh model to a real hand radiograph using Covariance Matrix Adaptation Evolution Strategy. Early results demonstrate that our approach works well. Further inquiry is required to evaluate the applicability of our registration approach to other articulated musculoskeletal anatomy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrade, N., Faria, F.A., Cappabianco, F.A.M.: A practical review on medical image registration: from rigid to deep learning based approaches. In: 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 463–470. IEEE (2018)
Aubert, B., Vazquez, C., Cresson, T., Parent, S., de Guise, J.A.: Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans Med Imaging 38(12), 2796–2806 (2019)
Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)
Englander, Z.A., Martin, J.T., Ganapathy, P.K., Garrett, W.E., DeFrate, L.E.: Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait. J. Biomech. 81, 36–44 (2018)
Esteban, J., Grimm, M., Unberath, M., Zahnd, G., Navab, N.: Towards fully automatic X-ray to CT registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 631–639. Springer (2019)
Folkerts, M., Jia, X., Gu, X., Choi, D., Majumdar, A., Jiang, S.:MO-FF-A4-05: implementation and evaluation of various DRR algorithms on GPU. Med. Phys. 37(6Part6), 3367-3367 (2010)
Gao, C., Liu, X., Gu, W., Killeen, B., Armand, M., Taylor, R., Unberath, M.: Generalizing spatial transformers to projective geometry with applications to 2D/3D registration. arXiv preprint arXiv:2003.10987 (2020)
Gómez, O., Ibáñez, O., Valsecchi, A., Bermejo, E., Molina, D., Cordón, O.: Performance analysis of real-coded evolutionary algorithms under a computationally expensive optimization scenario: 3D–2D comparative radiography. Appl. Soft Comput. 97, (2020)
Gómez, O., Ibanez, O., Valsecchi, A., Cordón, O., Kahana, T.: 3D–2D silhouette-based image registration for comparative radiography-based forensic identification. Pattern Recogn. 83, 469–480 (2018)
Gong, R.H., Stewart, J., Abolmaesumi, P.: Multiple-object 2-D-3-D registration for noninvasive pose identification of fracture fragments. IEEE Trans. Biomed. Eng. 58(6), 1592–1601 (2011)
Graham, R.N., Perriss, R.W., Scarsbrook, A.F.: DICOM demystified: a review of digital file formats and their use in radiological practice. Clin. Radiol. 60(11), 1133–1140 (2005)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)
Huang, J., Yagel, R., Filippov, V., Kurzion, Y.: An accurate method for voxelizing polygon meshes. In: Kaufman, A.E., Yagel, R., Lorensen, W.E. (eds.) Proceeding of the 1998 IEEE Symposium on Volume Visualization, VVS 1998, Research Triangle Park, NC, USA, 19–20 October 1998, pp. 119–126. ACM/IEEE Comput Soc (1998)
International Journal of Computer Assisted Radiology and Surgery Registration and motion analysis. 9(1), 31–34 (2014). https://doi.org/10.1007/s11548-014-1017-9
Neumann, E., Lefèvre, S., Zimmermann, B., Gay, S., Müller-Ladner, U.: Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 16(10), 458–468 (2010)
N. Freud, P.Duvauchelle, Létang, J.M., D.Babot: Fast and robust ray casting algorithms for virtual X-ray imaging. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 248(1), 175–180 (2006)
Illustrated Handbook of Rheumatic and Musculo-Skeletal Diseases. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03664-5_9
Rajpurkar, P., et al.: Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957 (2017)
Schett, G.: Erosive arthritis. Arthritis Res. Therapy 9(1), 1–6 (2007)
Valsecchi, A., Bermejo, E., Damas, S., Cordón, O.: Metaheuristics for Medical Image Registration. In: Martí, R., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Heuristics, pp. 1079–1101. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-07124-4_56
Vidal, F.P., Garnier, M., Freud, N., Létang, J.M., John, N.W.: Simulation of X-ray attenuation on the GPU. In: Proceedings of Theory and Practice of Computer Graphics 2009, pp. 25–32. Eurographics Association, Cardiff, UK, Jun 2009
Vidal, F.P., Villard, P.F.: Development and validation of real-time simulation of X-ray imaging with respiratory motion. Comput. Med. Imaging Graph. 49, 1–15 (2016)
Viergever, M.A., Antoine Maintz, J., Klein, S., Murphy, K., Staring, M., Pluim, J.P.: A survey of medical image registration-under review. Med. Image Anal. 33, 140–144 (2016)
Wang, M., Li, P.: A review of deformation models in medical image registration. J. Med. Biol. Eng. 39(1), 1–17 (2019)
Wen, T., Mihail, R., Al-maliki, S., Létang, J.M., Vidal, F.P.: Registration of 3D triangular models to 2D X-ray projections using black-box optimisation and X-ray simulation. In: Computer Graphics and Visual Computing (CGVC), pp. 105–113. The Eurographics Association (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wen, T., Mihail, R.P., Vidal, F.P. (2021). 3D-2D Registration Using X-Ray Simulation and CMA-ES. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-72699-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72698-0
Online ISBN: 978-3-030-72699-7
eBook Packages: Computer ScienceComputer Science (R0)