Skip to main content

Improved Crowding Distance in Multi-objective Optimization for Feature Selection in Classification

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Feature selection is an essential preprocessing step in data mining and machine learning. A feature selection task can be treated as a multi-objective optimization problem which simultaneously minimizes the classification error and the number of selected features. Many existing feature selection approaches including multi-objective methods neglect that there exists multiple optimal solutions in feature selection. There can be multiple different optimal feature subsets which achieve the same or similar classification performance. Furthermore, when using evolutionary multi-objective optimization for feature selection, a crowding distance metric is typically used to play a role in environmental selection. However, some existing calculations of crowding metrics based on continuous/numeric values are inappropriate for feature selection since the search space of feature selection is discrete. Therefore, this paper proposes a new environmental selection method to modify the calculation of crowding metrics. The proposed approach is expected to help a multi-objective feature selection algorithm to find multiple potential optimal feature subsets. Experiments on sixteen different datasets of varying difficulty show that the proposed approach can find more diverse feature subsets, achieving the same classification performance without deteriorating performance regarding hypervolume and inverted generational distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coello, C.C., Lechuga, M.S.: Mopso: A proposal for multiple objective particle swarm optimization. In: 2002 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1051–1056 (2002)

    Google Scholar 

  2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M. (ed.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  5. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective feature selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71618-1_27

    Chapter  Google Scholar 

  6. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)

    Article  Google Scholar 

  7. He, Z., Yen, G.G.: Many-objective evolutionary algorithms based on coordinated selection strategy. IEEE Trans. Evol. Comput. 21(2), 220–233 (2016)

    Article  Google Scholar 

  8. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  10. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective, vol. 453, Springer, Boston (1998)

    Google Scholar 

  11. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. In: Feature Selection in Data Mining, pp. 4–13 (2010)

    Google Scholar 

  12. Liu, Y., Gong, D., Sun, J., Jin, Y.: A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans. Cybern. 47(9), 2689–2702 (2017)

    Article  Google Scholar 

  13. Nguyen, B.H., Xue, B., Andreae, P., Ishibuchi, H., Zhang, M.: Multiple reference points-based decomposition for multiobjective feature selection in classification: static and dynamic mechanisms. IEEE Trans. Evol. Comput. 24(1), 170–184 (2019)

    Article  Google Scholar 

  14. Nguyen, H.B., Xue, B., Andreae, P., Zhang, M.: Particle swarm optimisation with genetic operators for feature selection. In: 2017 IEEE Congress on Evolutionary Computation, pp. 286–293 (2017)

    Google Scholar 

  15. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  16. Tran, B., Xue, B., Zhang, M.: Variable-length particle swarm optimization for feature selection on high-dimensional classification. IEEE Trans. Evol. Comput. 23(3), 473–487 (2018)

    Article  Google Scholar 

  17. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  18. Xu, H., Xue, B., Zhang, M.: A duplication analysis based evolutionary algorithm for bi-objective feature selection. IEEE Trans. Evol. Comput. https://doi.org/10.1109/TEVC20203016049

  19. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2012)

    Article  Google Scholar 

  20. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

    Article  Google Scholar 

  21. Yue, C., Liang, J., Qu, B., Han, Y., Zhu, Y., Crisalle, O.D.: A novel multiobjective optimization algorithm for sparse signal reconstruction. Signal Process. 167, (2020)

    Google Scholar 

  22. Yue, C., Liang, J., Qu, B., Yu, K., Song, H.: Multimodal multiobjective optimization in feature selection. In: 2019 IEEE Congress on Evolutionary Computation, pp. 302–309 (2019)

    Google Scholar 

  23. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)

    Article  Google Scholar 

  24. Zhang, X., Fang, L., Hipel, K.W., Ding, S., Tan, Y.: A hybrid project portfolio selection procedure with historical performance consideration. Expert Syst. Appl. 142, (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Xue, B., Liang, J., Zhang, M. (2021). Improved Crowding Distance in Multi-objective Optimization for Feature Selection in Classification. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics