Skip to main content

Combining Multi-objective Evolutionary Algorithms with Deep Generative Models Towards Focused Molecular Design

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Recent advances in applying deep generative learning to molecular design have led to a large number of novel approaches to the targeted generation of molecules towards specific features and applications. In this work, we expand on the latent space navigation approach, where molecules are optimized by operating in their latent representation inside a deep auto-encoder, by introducing multi-objective evolutionary algorithms (MOEAs), and benchmarking the proposed framework on several objectives from recent literature. Using several case studies from literature, we show that our proposed method is capable of controlling abstract chemical properties, is competitive with other state-of-the-art methods and can perform relevant tasks such as optimizing a predefined molecule while maintaining a similarity threshold. Also, MOEAs allow to generate molecules with a good level of diversity, which is a desired feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benítez-Hidalgo, A., Nebro, A.J., García-Nieto, J., Oregi, I., Ser, J.D.: jmetalpy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019)

    Article  Google Scholar 

  2. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of drugs. Nature Chem. 4(2), 90–98 (2012)

    Article  Google Scholar 

  3. Bresson, X., Laurent, T.: A Two-Step Graph Convolutional Decoder for Molecule Generation. arXiv:1906.03412 [cs, stat] (2019)

  4. Brown, N., McKay, B., Gilardoni, F., Gasteiger, J.: A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J. Chem. Inf. Comput. Sci. 44(3), 1079–1087 (2004)

    Article  Google Scholar 

  5. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. arXiv preprint arXiv:1802.08786 (2018)

  6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  7. Devi, R.V., Sathya, S.S., Coumar, M.S.: Evolutionary algorithms for de novo drug design - a survey. Appl. Soft. Comput. 27, 543–552 (2015)

    Article  Google Scholar 

  8. DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Griffiths, R.R., Hernández-Lobato, J.M.: Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem. Sci. 11(2), 577–586 (2020)

    Article  Google Scholar 

  11. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-Guzik, A.: Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv:1705.10843 (2017)

  12. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 4(2), 268–276 (2018)

    Article  Google Scholar 

  13. Huang, R., et al.: Tox21challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Frontiers Environ. Sci. 3, 85 (2016)

    Article  Google Scholar 

  14. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In: International Conference on Machine Learning. pp. 2323–2332. PMLR (2018)

    Google Scholar 

  15. Jin, W., Yang, K., Barzilay, R., Jaakkola, T.: Learning multimodal graph-to-graph translation for molecular optimization. arXiv:1812.01070 [cs, stat] (2019)

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  17. Kukkonen, S., Lampinen, J.: Gde3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation. vol. 1, pp. 443–450 (2005)

    Google Scholar 

  18. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1945–1954. JMLR. org (2017)

    Google Scholar 

  19. Landrum, G.: Rdkit: open-source cheminformatics software (2016)

    Google Scholar 

  20. Leguy, J., Cauchy, T., Glavatskikh, M., Duval, B., Da Mota, B.: Evomol: aflexible and interpretable evolutionary algorithm for unbiased de novomolecular generation. Cheminform 12(55) (2020)

    Google Scholar 

  21. Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.: Constrained graph variational autoencoders for molecule design. In: Advances in Neural Information Processing Systems, pp. 7795–7804 (2018)

    Google Scholar 

  22. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: International Conference on Learning Representations (2016). http://arxiv.org/abs/1511.05644

  23. Marim, L., Lemes, M., Dal Pino Jr, A.: Neural-network-assisted genetic algorithm applied to silicon clusters. Phys. Rev. A 67, 033203 (2003)

    Google Scholar 

  24. Maziarka, Ł., Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., Warchoł, M.: Mol-cyclegan: a generative model for molecular optimization. J. Chem. 12(1), 1–18 (2020)

    Article  Google Scholar 

  25. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de novo design through deep reinforcement learning (2017)

    Google Scholar 

  26. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  27. Patra, T.K., Meenakshisundaram, V., Hung, J.H., Simmons, D.S.: Neural-network-biased genetic algorithms for materials design: Evolutionary algorithms that learn (2017)

    Google Scholar 

  28. Polishchuk, P.G., et al.: Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput.-Aided Mol. Des. 27(8), 675–679 (2013)

    Article  Google Scholar 

  29. Polykovskiy, D., et al.: Molecular sets (MOSES): a benchmarking platform for molecular generation models. Frontiers Pharmacol. 11, 565644 (2020)

    Article  Google Scholar 

  30. Polykovskiy, D., et al.: Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharm. 15(10), 4398–4405 (2018)

    Article  Google Scholar 

  31. Popova, M., Shvets, M., Oliva, J., Isayev, O.: MolecularRNN: Generating realistic molecular graphs with optimized properties. [cs, q-bio, stat] arXiv:1905.13372 (2019)

  32. Ravber, M., Mernik, M., Črepinšek, M.: The impact of quality indicators on the rating of multi-objective evolutionary algorithms. Appl. Soft. Comput. 55, 265–275 (2017)

    Article  Google Scholar 

  33. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)

    Article  Google Scholar 

  34. Samanta, et al.: NeVAE: a deep generative model for molecular graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1110–1117 (2019)

    Google Scholar 

  35. Sattarov, B., Baskin, I.I., Horvath, D., Marcou, G., Bjerrum, E.J., Varnek, A.: De novo molecular design by combining deep deep autoencoder recurrent neural networks with generative topographic mapping. J. Chem. Inf. Model. 59(3), 1182–1196 (2019)

    Article  Google Scholar 

  36. Segler, M.H., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. 4(1), 120–131 (2018)

    Article  Google Scholar 

  37. Spiegel, J.O., Durrant, J.D.: AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J. Cheminformatics 12(1), 1–16 (2020). https://doi.org/10.1186/s13321-020-00429-4

    Article  Google Scholar 

  38. Winter, R., Montanari, F., Steffen, A., Briem, H., Noé, F., Clevert, D.A.: Efficient multi-objective molecular optimization in a continuous latent space. Chem. Sci. 10(34), 8016–8024 (2019)

    Article  Google Scholar 

  39. Yoshikawa, N., Terayama, K., Sumita, M., Homma, T., Oono, K., Tsuda, K.: Population-based de novo molecule generation, using grammatical evolution. Chem. Lett. 47(11), 1431–1434 (2018)

    Article  Google Scholar 

  40. You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph convolutional policy network for goal-directed molecular graph generation. Adv. Neural Inf. Process. Syst. 31, 6410–6421 (2018)

    Google Scholar 

  41. Zitzler, E., Laumanns, M., Thiele, L.: Spea 2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. Evol. Methods Des. Optim. and Control Appl. Ind. Probl. 3242, 95–100 (2001)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement number 814408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, T., Correia, J., Pereira, V., Rocha, M. (2021). Combining Multi-objective Evolutionary Algorithms with Deep Generative Models Towards Focused Molecular Design. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics