Skip to main content

A Systematic Approach to Building Autoencoders for Intrusion Detection

  • Conference paper
  • First Online:
Silicon Valley Cybersecurity Conference (SVCC 2020)

Abstract

Network Intrusion Detection Systems (NIDS) have been the most effective defense mechanism against various network attacks. As attack patterns have been intelligently and dynamically evolving, the deep learning-based NIDSs have been widely adopted to improve intrusion detection accuracy. Autoencoders, one of the unsupervised neural networks, are generative deep learning models that learn to represent the data as compressed vectors without class labels. Recently, various autoencoder–generative deep learning models–have been used for NIDS in order to efficiently alleviate the laborious labeling and to effectively detect unknown types of attacks (i.e. zero-day attacks). In spite of the effectiveness of autoencoders in detecting intrusions, it requires tremendous effort to identify the optimal model architecture of the autoencoders that results in the best performance, which is an obstacle for practical applications. To address this challenge, this paper rigorously studies autoencoders with two important factors using real network data. We investigate how the size of a latent layer and the size of the model influence the detection performance. We evaluate our autoencoder model using the IDS benchmark data sets and present the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 99 K.C.: KDD Cup 1999 Data (2007). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed Mar 2019

  2. Alom, M.Z., Bontupalli, V., Taha, T.: Intrusion detection using deep belief networks. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 339–344 (2015)

    Google Scholar 

  3. Ambusaidi, M.A., He, X., Nanda, P., Tan, Z.: Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Trans. Comput. 65(10), 2986–2998 (2016)

    Article  MathSciNet  Google Scholar 

  4. Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically improved autoencoder based models. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 193–198. IEEE (2017)

    Google Scholar 

  5. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  6. Chitrakar, R., Huang, C.: Selection of candidate support vectors in incremental SVM for network intrusion detection. Comput. Secur. 45, 231–241 (2014)

    Article  Google Scholar 

  7. Cyphort: Cyphort Data Sheet (2017). http://go.cyphort.com/rs/181-NTN-682/images/CYPHORT_DataSheet.pdf. Accessed Mar 2019

  8. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)

    Article  Google Scholar 

  9. Gharib, M., Mohammadi, B., Dastgerdi, S.H., Sabokrou, M.: AutoIDS: auto-encoder based method for intrusion detection system. arXiv abs/1911.03306 (2019)

    Google Scholar 

  10. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (Formerly BIONETICS), BICT 2015, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, pp. 21–26 (2016). https://doi.org/10.4108/eai.3-12-2015.2262516

  11. Kaur, H., Singh, G., Minhas, J.: A review of machine learning based anomaly detection techniques. arXiv preprint arXiv:1307.7286 (2013)

  12. Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International Conference on Platform Technology and Service (PlatCon), pp. 1–5. IEEE (2016)

    Google Scholar 

  13. Kuypers, M.A., Maillart, T., Paté-Cornell, E.: An empirical analysis of cyber security incidents at a large organization. Department of Management Science and Engineering, Stanford University, School of Information, UC Berkeley (2016). http://fsi.stanford.edu/sites/default/files/kuypersweis_v7.pdf. Accessed 30 July 2020

  14. Li, Y., Ma, R., Jiao, R.: A hybrid malicious code detection method based on deep learning. Int. J. Softw. Eng. Appl. 9(5), 205–216 (2015)

    Google Scholar 

  15. Martín, M.L., Carro, B., Sánchez-Esguevillas, A., Lloret, J.: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in IoT. Sensors (Basel, Switzerland) 17, 1967 (2017)

    Article  Google Scholar 

  16. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. In: 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, 18–21 February 2018. The Internet Society (2018). http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-3_Mirsky_paper.pdf

  17. Petersen, R.: Data mining for network intrusion detection: a comparison of data mining algorithms and an analysis of relevant features for detecting cyber-attacks (2015)

    Google Scholar 

  18. RSA: RSA Netwitness Logs and Packets (2017). https://www.rsa.com/content/dam/en/data-sheet/rsa-netwitness-logs-and-packets.pdf. Accessed Mar 2019

  19. Sahu, S., Mehtre, B.M.: Network intrusion detection system using j48 decision tree. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2023–2026. IEEE (2015)

    Google Scholar 

  20. Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intrusion detection scheme. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft computing in industrial applications. AINSC, vol. 96, pp. 293–303. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20505-7_26

    Chapter  Google Scholar 

  21. Sapre, S., Ahmadi, P., Islam, K.R.: A robust comparison of the KDDCup99 and NSL-KDD IoT network intrusion detection datasets through various machine learning algorithms. arXiv abs/1912.13204 (2019)

    Google Scholar 

  22. Sharafaldin, I., Lashkari, A., Ghorbani, A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP (2018)

    Google Scholar 

  23. Siddique, K., Akhtar, Z., Khan, F.A., Kim, Y.: KDD Cup 99 data sets: a perspective on the role of data sets in network intrusion detection research. Computer 52, 41–51 (2019)

    Article  Google Scholar 

  24. Tao, X., Kong, D., Wei, Y., Wang, Y.: A big network traffic data fusion approach based on fisher and deep auto-encoder. Information 7(2), 20 (2016)

    Article  Google Scholar 

  25. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the KDD CUP 99 data set. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009)

    Google Scholar 

  26. Zavrak, S., İskefiyeli, M.: Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE Access 8, 108346–108358 (2020). https://doi.org/10.1109/ACCESS.2020.3001350

    Article  Google Scholar 

  27. Zhang, B., Yu, Y., Li, J.: Network intrusion detection based on stacked sparse autoencoder and binary tree ensemble method. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-00952, Development of 5G Edge Security Technology for Ensuring 5G+ Service Stability and Availability).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngrok Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Hyun, S., Cheong, YG. (2021). A Systematic Approach to Building Autoencoders for Intrusion Detection. In: Park, Y., Jadav, D., Austin, T. (eds) Silicon Valley Cybersecurity Conference. SVCC 2020. Communications in Computer and Information Science, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-72725-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72725-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72724-6

  • Online ISBN: 978-3-030-72725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics