Skip to main content

Learning Parameter Analysis for Machine Reading Comprehension

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Included in the following conference series:

  • 806 Accesses

Abstract

Machine reading comprehension is a classic issue artificial intelligence. It is a key technology in the next generation search engine and intelligent interactive service. The traditional methods usually work in a small scale of data sets. The traditional system cannot meet the emerging demand. Deep learning and cloud computation have ability to deal with the large scale data sets. In real scene, the parameters affect the performance of machine reading comprehension task. In this paper, we analyze how the parameters of deep neural network affect the machine reading comprehension. The experiment results show that the performance is only sensitive to a few parameters which should be key point for engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)

    Article  Google Scholar 

  2. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  3. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220(2017), 160–169 (2017)

    Article  Google Scholar 

  4. Lee, Y., Kim, Y., Park, S.: A machine learning approach that meets axiomatic properties in probabilistic analysis of LTE spectral efficiency. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 1451–1453 (2019)

    Google Scholar 

  5. Ji, H., Sun, C., Shieh, W.: Spectral efficiency comparison between analog and digital RoF for mobile fronthaul transmission link. J. Lightwave Technol. 38, 5617–5623 (2020)

    Article  Google Scholar 

  6. Hayati, M., Kalbkhani, H., Shayesteh, M.G.: Relay selection for spectral-efficient network-coded multi-source D2D communications. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, pp. 1377–1381 (2019)

    Google Scholar 

  7. You, L., Xiong, J., Zappone, A., Wang, W., Gao, X.: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Trans. Signal Process. 68, 2645–2659 (2020)

    Article  MathSciNet  Google Scholar 

  8. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Article  MathSciNet  Google Scholar 

  9. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019)

    Google Scholar 

  10. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. 1–10 (2019)

    Google Scholar 

  11. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 1–21 (2019)

    Google Scholar 

  12. Tan, J., Xiao, S., Han, S., Liang, Y., Leung, V.C.M.: QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems. IEEE Trans. Wireless Commun. 18(4), 2415–2430 (2019)

    Article  Google Scholar 

  13. Wang, Y., Tang, X., Wang, T.: A unified QoS and security provisioning framework for wiretap cognitive radio networks: a statistical queueing analysis approach. IEEE Trans. Wireless Commun. 18(3), 1548–1565 (2019)

    Article  Google Scholar 

  14. Hassan, M.Z., Hossain, M.J., Cheng, J., Leung, V.C.M.: Hybrid RF/FSO backhaul networks with statistical-QoS-aware buffer-aided relaying. IEEE Trans. Wireless Commun. 19(3), 1464–1483 (2020)

    Article  Google Scholar 

  15. Zhang, Z., Wang, R., Yu, F.R., Fu, F., Yan, Q.: QoS aware transcoding for live streaming in edge-clouds aided HetNets: an enhanced actor-critic approach. IEEE Trans. Veh. Technol. 68(11), 11295–11308 (2019)

    Article  Google Scholar 

  16. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  17. Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Industr. Inf. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  18. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  19. Barakabitze, A.A., et al.: QoE management of multimedia streaming services in future networks: a tutorial and survey. IEEE Commun. Surv. Tutor. 22(1), 526–565 (2020)

    Article  Google Scholar 

  20. Orsolic, I., Skorin-Kapov, L.: A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access 8, 74691–74706 (2020)

    Article  Google Scholar 

  21. Song, E., et al.: Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Commun. 14(12), 2018–2026 (2020)

    Article  Google Scholar 

  22. Seufert, M., Wassermann, S., Casas, P.: Considering user behavior in the quality of experience cycle: towards proactive QoE-aware traffic management. IEEE Commun. Lett. 23(7), 1145–1148 (2019)

    Article  Google Scholar 

  23. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Article  MathSciNet  Google Scholar 

  24. Bao, R., Chen, L., Cui, P.: User behavior and user experience analysis for social network services. Wireless Netw. (2020). https://doi.org/10.1007/s11276-019-02233-x

  25. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  26. Huo, L., Jiang, D., Qi, S., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. (2019).

    Google Scholar 

  27. Guo, C., Liang, L., Li, G.Y.: Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE J. Sel. Areas Commun. 37(4), 905–917 (2019)

    Article  Google Scholar 

  28. Shehab, M., Alves, H., Latva-aho, M.: Effective capacity and power allocation for machine-type communication. IEEE Trans. Veh. Technol. 68(4), 4098–4102 (2019)

    Article  Google Scholar 

  29. Cui, Q., Gu, Y., Ni, W., Liu, R.P.: Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J. Sel. Areas Commun. 35(8), 1754–1767 (2017)

    Article  Google Scholar 

  30. Xiao, C., Zeng, J., Ni, W., Liu, R.P., Su, X., Wang, J.: Delay guarantee and effective capacity of downlink NOMA fading channels. IEEE J. Sel. Top. Sign. Process. 13(3), 508–523 (2019)

    Article  Google Scholar 

  31. Zhang, K., Chen, L., An, Y. et al.: A QoE test system for vehicular voice cloud services. Mobile Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01415-3

  32. Farooq, H., Kaushik, B.: Review of deep learning techniques for improving the performance of machine reading comprehension problem. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 928–935 (2020)

    Google Scholar 

  33. Guo, J., Liu, G., Xiong, C.: Multiple attention networks with temporal convolution for machine reading comprehension. In: 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, pp. 546–549 (2019)

    Google Scholar 

  34. Jin, W., Yang, G., Zhu, H.: An efficient machine reading comprehension method based on attention mechanism. In: 2019 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, pp. 1297–1302 (2019)

    Google Scholar 

  35. Seo, M., Kembhavi. A., Farhadi. A., et al.: Bidirectional attention flow for machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

  36. He, W., Liu. K., Liu, J., et al.: DuReader: a Chinese machine reading comprehension dataset from real-world applications. In: Association for Computational Linguistics, Special Issue: Proceedings of the Workshop on Machine Reading for Question Answering, pp. 37–46 (2018)

    Google Scholar 

  37. Etzioni, O., Banko, M., Cafarella, M.J.: Machine reading. In: AAAI Spring Symposium: Machine Reading, Technical Report, Stanford, California, USA, DBLP, pp. 1–5 (2007)

    Google Scholar 

  38. Shen, Y., Huang, P.S., Gao, J., et al. ReasoNet: learning to stop reading in machine comprehension. In: Proceedings of the 23rd ACM SIGKDD International Conference. ACM (2017)

    Google Scholar 

  39. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of 40th Annual Meeting of the Association for Computational Linguistics(ACL), Philadelphia, pp. 311–318 (2002). https://doi.org/10.3115/1073083.1073135

  40. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceedings of the Workshop on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain, pp. 74–81 (2004). https://www.aclweb.org/anthology/W04-1013

Download references

Acknowledgements

This work is partly supported by Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Chen, L., Shi, Y., Cui, P. (2021). Learning Parameter Analysis for Machine Reading Comprehension. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-72792-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72792-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72791-8

  • Online ISBN: 978-3-030-72792-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics