Skip to main content

Remote Vehicular Control Network Test Platform

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

In this paper, architecture is proposed to test remote control network for low speed vehicle remote driving. By using 4G cellular network access to the cloud service platform, the platform is easy to deployed in common commercial networks. A control signal transmit experiment is executed in the commercial network crossing one more thousand miles; the performance show that the common 4G cellular and backbone networks can support the real-time signal transmit for low speed vehicle. Video latency is tested using different cameras, and the MOS is defined to measure how difficult to drive a remote vehicle under certain video latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, K., Chen, L., An, Y., Cui, P.: A QoE test system for vehicular voice cloud services. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

  2. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  3. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 1–21 (2019)

    Google Scholar 

  4. Tan, J., Xiao, S., Han, S., Liang, Y., Leung, V.C.M.: QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems. IEEE Trans. Wireless Commun. 18(4), 2415–2430 (2019)

    Article  Google Scholar 

  5. Wang, Y., Tang, X., Wang, T.: A unified QoS and security provisioning framework for wiretap cognitive radio networks: a statistical Queueing analysis approach. IEEE Trans. Wireless Commun. 18(3), 1548–1565 (2019)

    Article  Google Scholar 

  6. Hassan, M.Z., Hossain, M.J., Cheng, J., Leung, V.C.M.: Hybrid RF/FSO backhaul networks with statistical-QoS-aware buffer-aided relaying. IEEE Trans. Wireless Commun. 19(3), 1464–1483 (2020)

    Article  Google Scholar 

  7. Zhang, Z., Wang, R., Yu, F.R., Fu, F., Yan, Q.: QoS aware transcoding for live streaming in edge-clouds aided HetNets: an enhanced actor-critic approach. IEEE Trans. Veh. Technol. 68(11), 11295–11308 (2019)

    Article  Google Scholar 

  8. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron. 26(5), 1079–1085 (2017)

    Article  Google Scholar 

  9. Jiang, D., Wang, Y., Lv, Z., et al.: Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  10. Bao, R., Chen, L., Cui, P.: User behavior and user experience analysis for social network services. Wireless Netw. (2020). https://doi.org/10.1007/s11276-019-02233-x

    Article  Google Scholar 

  11. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 1(1), 1–12 (2018)

    MathSciNet  Google Scholar 

  12. Chen, L., et al.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)

    Article  Google Scholar 

  13. Jiang, D., Wang, W., Shi, L., et al.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 5(3), 1–2 (2018)

    Google Scholar 

  14. Huo, L., Jiang, D., Zhu, X., et al.: An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int. J. Commun. Syst. 1–12 (2019)

    Google Scholar 

  15. Huo, L., Jiang, D., Qi, S., Song, H., Miao, L.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01419-z

    Article  Google Scholar 

  16. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mob. Netw. Appl. (2020). https://doi.org/10.1007/s11036-019-01414-4

    Article  Google Scholar 

  17. Guo, C., Liang, L., Li, G.Y.: Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE J. Sel. Areas Commun. 37(4), 905–917 (2019)

    Article  Google Scholar 

  18. Shehab, M., Alves, H., Latva-aho, M.: Effective capacity and power allocation for machine-type communication. IEEE Trans. Veh. Technol. 68(4), 4098–4102 (2019)

    Article  Google Scholar 

  19. Wang, F., Jiang, D., Qi, S., Qiao, C., Shi, L.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2020). https://doi.org/10.1007/s11036-019-01421-5

    Article  Google Scholar 

  20. Jiang, D., Huo, L., Lv, Z., et al.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  21. You, L., Xiong, J., Zappone, A., Wang, W., Gao, X.: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Trans. Signal Process. 68, 2645–2659 (2020)

    Article  MathSciNet  Google Scholar 

  22. Ji, H., Sun, C., Shieh, W.: Spectral efficiency comparison between analog and digital RoF for mobile fronthaul transmission link. J. Lightwave Technol. (2020)

    Google Scholar 

  23. Hayati, M., Kalbkhani, H., Shayesteh, M.G.: Relay selection for spectral-efficient network-coded multi-source D2D communications. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, pp. 1377–1381 (2019)

    Google Scholar 

  24. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  25. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220(2017), 160–169 (2017)

    Article  Google Scholar 

  26. Jiang, D., Wang, Y., Lv, Z., et al.: Intelligent optimization-based reliable energy-efficient networking in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. (2019)

    Google Scholar 

  27. Barakabitze, A.A., et al.: QoE management of multimedia streaming services in future networks: a tutorial and survey. IEEE Commun. Surv. Tutor. 22(1), 526–565 (2020)

    Article  Google Scholar 

  28. Orsolic, I., Skorin-Kapov, L.: A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access 8, 74691–74706 (2020)

    Article  Google Scholar 

  29. Song, E., et al.: Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Commun. 14(12), 2018–2026 (2020)

    Article  Google Scholar 

  30. Seufert, M., Wassermann, S., Casas, P.: Considering user behavior in the quality of experience cycle: towards proactive QoE-aware traffic management. IEEE Commun. Lett. 23(7), 1145–1148 (2019)

    Article  Google Scholar 

  31. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  32. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3

    Article  Google Scholar 

  33. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2

    Article  Google Scholar 

  34. Nakagawa, T., et al.: A human machine interface framework for autonomous vehicle control. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, pp. 1–3 (2017)

    Google Scholar 

  35. Verma, B., et al.: Framework for dynamic hand gesture recognition using Grassmann manifold for intelligent vehicles. IET Intel. Transport Syst. 12(7), 721–729 (2018)

    Article  Google Scholar 

  36. Emara, M., Filippou, M.C., Sabella, D.: MEC-assisted end-to-end latency evaluations for C-V2X communications. In: 2018 European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia, pp. 1–9 (2018)

    Google Scholar 

  37. Bazzi, A., Cecchini, G., Zanella, A., Masini, B.M.: Study of the impact of PHY and MAC parameters in 3GPP C-V2V mode 4. IEEE Access 6, 71685–71698 (2018)

    Article  Google Scholar 

  38. Wang, Y., Wang, C., Shi, C., Xiao, B.: A selection criterion for the optimal resolution of ground-based remote sensing cloud images for cloud classification. IEEE Trans. Geosci. Remote Sens. 57(3), 1358–1367 (2019)

    Article  Google Scholar 

  39. Tsokalo, I.A., Wu, H., Nguyen, G.T., Salah, H., Fitzek, F.H.P.: Mobile edge cloud for robot control services in industry automation. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, pp. 1–2 (2019)

    Google Scholar 

  40. Xiong, G., Shen, D., Dong, X., Hu, B., Fan, D., Zhu, F.: Parallel transportation management and control system for subways. IEEE Trans. Intell. Transp. Syst. 18(7), 1974–1979 (2017)

    Article  Google Scholar 

  41. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018)

    Article  Google Scholar 

  42. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE Trans. Industr. Inf. 15(4), 2405–2415 (2019)

    Article  Google Scholar 

  43. Laaki, H., Miche, Y., Tammi, K.: Prototyping a digital twin for real time remote control over mobile networks: application of remote surgery. IEEE Access 7, 20325–20336 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No. 2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Cui, P., Chen, Y., Zhang, K., An, Y. (2021). Remote Vehicular Control Network Test Platform. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72795-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72794-9

  • Online ISBN: 978-3-030-72795-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics