Skip to main content

How to Deploy Timer for Retransmission

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

In some emerging mobile applications, the UDP has advantage for service latency. However, retransmission mechanism is essential to deal with the losing packets while the service is based on UDP protocol. The timer for retransmission could be deployed on sender side or receiver side. To compare these two approaches, we investigate the relationship between service latency and losing packet rate in simulation. The results show that deploying the timer on receiver side obtains higher performance than the traditional method does within unstable channel environment. A new retransmission algorithm is proposed to emerging mobile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, K., Chen, L., An, Y., Cui, P.: A QoE test system for vehicular voice cloud services. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

  2. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  3. Huo, L., Jiang, D., Lv, Z., Singh, S.: An intelligent optimization‐based traffic information acquirement approach to software‐defined networking. Comput. Intell. 36(1), 151–171 (2019)

    Article  Google Scholar 

  4. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron. 26(5), 1079–1085 (2017)

    Article  Google Scholar 

  5. Jiang, D., Wang, Y., Lv, Z., et al.: Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  6. Bao, R., Chen, L., Cui, P.: User behavior and user experience analysis for social network services. Wireless Netw. (2019). https://doi.org/10.1007/s11276-019-02233-x,(

    Article  Google Scholar 

  7. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 1(1), 1–12 (2018)

    MathSciNet  Google Scholar 

  8. Chen, L., et al.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)

    Article  Google Scholar 

  9. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mob. Netw. Appl. (2020). https://doi.org/10.1007/s11036-019-01414-4

    Article  Google Scholar 

  10. Wang, F., Jiang, D., Qi, S., Qiao, C., Shi, L.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2020). https://doi.org/10.1007/s11036-019-01421-5

    Article  Google Scholar 

  11. Jiang, D., Huo, L., Lv, Z., et al.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  12. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  13. Lee, Y., Kim, Y., Park, S.: A machine learning approach that meets axiomatic properties in probabilistic analysis of LTE spectral efficiency. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 1451–1453 (2019)

    Google Scholar 

  14. Ji, H., Sun, C., Shieh, W.: Spectral efficiency comparison between analog and digital RoF for mobile fronthaul transmission link. J. Lightwave Technol. 38(20), 5617–5623 (2020)

    Article  Google Scholar 

  15. Hayati, M., Kalbkhani, H., Shayesteh, M.G.: Relay selection for spectral-efficient network-coded multi-source D2D communications. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, pp. 1377–1381 (2019)

    Google Scholar 

  16. You, L., Xiong, J., Zappone, A., Wang, W., Gao, X.: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Trans. Signal Process. 68, 2645–2659 (2020)

    Article  MathSciNet  Google Scholar 

  17. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220(2017), 160–169 (2017)

    Article  Google Scholar 

  18. Jiang, D., Wang, Y., Lv, Z., et al.: Intelligent optimization-based reliable energy-efficient networking in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2019)

    Article  Google Scholar 

  19. Wiatr, P., Chen, J., Monti, P., Wosinska, L.: Energy efficiency versus reliability performance in optical backbone networks [invited]. IEEE/OSA J. Opt. Commun. Netw. 7(3), A482–A491 (2015)

    Article  Google Scholar 

  20. Tan, J., Xiao, S., Han, S., Liang, Y., Leung, V.C.M.: QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems. IEEE Trans. Wireless Commun. 18(4), 2415–2430 (2019)

    Article  Google Scholar 

  21. Wang, Y., Tang, X., Wang, T.: A unified QoS and security provisioning framework for wiretap cognitive radio networks: a statistical queueing analysis approach. IEEE Trans. Wireless Commun. 18(3), 1548–1565 (2019)

    Article  Google Scholar 

  22. Hassan, M.Z., Hossain, M.J., Cheng, J., Leung, V.C.M.: Hybrid RF/FSO backhaul networks with statistical-QoS-aware buffer-aided relaying. IEEE Trans. Wireless Commun. 19(3), 1464–1483 (2020)

    Article  Google Scholar 

  23. Zhang, Z., Wang, R., Yu, F.R., Fu, F., Yan, Q.: QoS Aware transcoding for live streaming in edge-clouds aided HetNets: an enhanced actor-critic approach. IEEE Trans. Veh. Technol. 68(11), 11295–11308 (2019)

    Article  Google Scholar 

  24. Jiang, D., Wang, W., Shi, L., et al.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 5(3), 1–2 (2018)

    Google Scholar 

  25. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2

    Article  Google Scholar 

  26. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  27. Barakabitze, A.A., et al.: QoE management of multimedia streaming services in future networks: a tutorial and survey. IEEE Commun. Surv. Tutor. 22(1), 526–565 (2020)

    Article  Google Scholar 

  28. Orsolic, I., Skorin-Kapov, L.: A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access 8, 74691–74706 (2020)

    Article  Google Scholar 

  29. Song, E., et al.: Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Commun. 14(12), 2018–2026 (2020)

    Article  Google Scholar 

  30. Seufert, M., Wassermann, S., Casas, P.: Considering user behavior in the quality of experience cycle: towards proactive QoE-aware traffic management. IEEE Commun. Lett. 23(7), 1145–1148 (2019)

    Article  Google Scholar 

  31. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3

    Article  Google Scholar 

  32. Huo, L., Jiang, D., Qi, S., Song, H., Miao, L.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01419-z

    Article  Google Scholar 

  33. Huo, L., Jiang, D., Zhu, X., et al.: An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int. J. Commun. Syst. 1–12 (2019)

    Google Scholar 

  34. Polese, M., Chiariotti, F., Bonetto, E., Rigotto, F., Zanella, A., Zorzi, M.: A survey on recent advances in transport layer protocols. IEEE Commun. Surv. Tutor. 21(4), 3584–3608 (2019)

    Article  Google Scholar 

  35. Morelli, A., Provosty, M., Fronteddu, R., Suri, N.: Performance evaluation of transport protocols in tactical network environments. In: MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, pp. 30–36 (2019)

    Google Scholar 

  36. Dwivedi, U., Agarwal, A., Roy, A., Chakraborty, A., Mukherjee, A.: A survey on wireless sensor network protocols for transport layer. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, pp. 390–394 (2018)

    Google Scholar 

  37. Assefi, M., Wittie, M., Knight, A.: Impact of network performance on cloud speech recognition. In: International Conference on Computer Communication and Networks, pp. 1–6. IEEE (2015)

    Google Scholar 

  38. Gomez, C., Crowcroft, J.: Multimodal retransmission timer for LPWAN. IEEE Internet Things J. 7(6), 4827–4838 (2020)

    Article  Google Scholar 

  39. Albashear, A.M.M., Ali, H.A., Ali, A.M.: Detection of man-in-the-middle attacks by using the TCP retransmission timeout: key compromise impersonation attack as study case. In: 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, pp. 1–8 (2018)

    Google Scholar 

  40. Kishimoto, S., Osada, S., Tarutani, Y., Fukushima, Y., Yokohira, T.: A TCP Incast avoidance method based on retransmission requests from a client. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 153–158 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No.2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J., Chen, L., Cui, P., An, Y., Zhang, K. (2021). How to Deploy Timer for Retransmission. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72795-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72794-9

  • Online ISBN: 978-3-030-72795-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics