Skip to main content

A Quantum Classifier Based Active Machine Learning for Intelligent Interactive Service

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

The response time of interactive services depends not only on network latency, but also on computer time. Active learning algorithms are the most important methods. One problem is that these algorithms with uncertain sampling strategies propose an active learning sampling strategy on the basis of sample error correction to ensure that the efficiency and accuracy of interactive information calling are improved, and they have high computational complexity. However, due to computational complexity, this method is only suitable for smaller data sets. This article discusses the use of quantum clusters to accelerate calculations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Toumi, H., Brahmi, Z., Benarfa, Z., Gammoudi, M.M.: Server load prediction using stream mining. In: 31st International Conference on Information Networking, Da Nang, Vietnam, pp. 653–661. IEEE (2017)

    Google Scholar 

  2. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  3. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 151–171 (2020)

    Article  Google Scholar 

  4. Zhang, K., Chen, L., An, Y., et al.: A QoE test system for vehicular voice cloud services. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01415-3

  5. Barakabitze, A.A., et al.: QoE management of multimedia streaming services in future networks: a tutorial and survey. IEEE Commun. Surv. Tutor. 22(1), 526–565 (2020)

    Article  Google Scholar 

  6. Orsolic, I., Skorin-Kapov, L.: A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access 8, 74691–74706 (2020)

    Article  Google Scholar 

  7. Song, E., et al.: Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Commun. 14(12), 2018–2026 (2020)

    Article  Google Scholar 

  8. Seufert, M., Wassermann, S., Casas, P.: Considering user behavior in the quality of experience cycle: towards proactive QoE-aware traffic management. IEEE Commun. Lett. 23(7), 1145–1148 (2019)

    Article  Google Scholar 

  9. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron. 26(5), 1079–1085 (2017)

    Article  Google Scholar 

  10. Jiang, D., Wang, Y., Lv, Z., et al.: Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  11. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 1(1), 1–12 (2018)

    MathSciNet  Google Scholar 

  12. Chen, L., Jiang, D., Song, H., Wang, P., Bao, R., Zhang, K., Li, Y.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)

    Article  Google Scholar 

  13. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mob. Netw. Appl. (2020). https://doi.org/10.1007/s11036-019-01414-4

  14. Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01421-5

  15. Jiang, D., Huo, L., Lv, Z., et al.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  16. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  17. Lee, Y., Kim, Y., Park, S.: A machine learning approach that meets axiomatic properties in probabilistic analysis of LTE spectral efficiency. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, South Korea, pp. 1451–1453 (2019)

    Google Scholar 

  18. Ji, H., Sun, C., Shieh, W.: Spectral efficiency comparison between analog and digital RoF for mobile fronthaul transmission link. J. Lightwave Technol. 38, 5617–5623 (2020)

    Article  Google Scholar 

  19. Hayati, M., Kalbkhani, H., Shayesteh, M.G.: Relay selection for spectral-efficient network-coded multi-source D2D communications. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, pp. 1377–1381 (2019)

    Google Scholar 

  20. You, L., Xiong, J., Zappone, A., Wang, W., Gao, X.: Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Trans. Signal Process. 68, 2645–2659 (2020)

    Article  MathSciNet  Google Scholar 

  21. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220, 160–169 (2017)

    Article  Google Scholar 

  22. Jiang, D., Wang, Y., Lv, Z., et al.: Intelligent optimization-based reliable energy-efficient networking in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. (2019)

    Google Scholar 

  23. Jiang, D., Wang, W., Shi, L., et al.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 5(3), 1–12 (2018)

    Google Scholar 

  24. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  25. Huo, L., Jiang, D., Qi, S., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01419-z

  26. Guo, C., Liang, L., Li, G.Y.: Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE J. Sel. Areas Commun. 37(4), 905–917 (2019)

    Article  Google Scholar 

  27. Shehab, M., Alves, H., Latva-aho, M.: Effective capacity and power allocation for machine-type communication. IEEE Trans. Veh. Technol. 68(4), 4098–4102 (2019)

    Article  Google Scholar 

  28. Cui, Q., Gu, Y., Ni, W., Liu, R.P.: Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J. Sel. Areas Commun. 35(8), 1754–1767 (2017)

    Article  Google Scholar 

  29. Xiao, C., Zeng, J., Ni, W., Liu, R.P., Su, X., Wang, J.: Delay guarantee and effective capacity of downlink NOMA fading channels. IEEE J. Sel. Top. Signal Process. 13(3), 508–523 (2019)

    Article  Google Scholar 

  30. Björnson, E., Larsson, E.G., Debbah, M.: Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated? IEEE Trans. Wirel. Commun. 15(2), 1293–1308 (2016)

    Article  Google Scholar 

  31. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2

  32. Wang, Y., Jiang, D., Huo, L., et al.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3

  33. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, vol. 29, no. 2, pp. 13–19. ACM (1994)

    Google Scholar 

  34. Du, B., Wang, Z., Zhang, L., Zhang, L., Liu, W., Shen, J., Tao, D.: Exploring representativeness and informativeness for active learning. IEEE Trans. Cybern. 47(1), 14–26 (2017)

    Article  Google Scholar 

  35. Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.: Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 47(7), 2218–2232 (2009)

    Article  Google Scholar 

  36. Liu, K., Qiang, X., Wang, Z.: Survey on active learning algorithm. Comput. Eng. Appl. 48(34), 1–4 (2012)

    Google Scholar 

  37. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(1), 45–66 (2002)

    MATH  Google Scholar 

  38. Kremer, J., Pedersen, K.S., Igel, C.: Active learning with support vector machines. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4(4), 313–326 (2014)

    Article  Google Scholar 

  39. Hu, R., Mac, N.B., Delany, S.J.: Active learning for text classification with reusability. Expert Syst. Appl. 45(C), 438–449 (2015)

    Google Scholar 

  40. Freund, Y., Schapire, Robert E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  41. Jiang, Y., Zhou, Z.H.: A text classification method based on term frequency classifier ensemble. J. Comput. Res. Dev. 43(10), 1681–1687 (2006)

    Article  Google Scholar 

  42. Al-Salemi, B., Ab-Aziz, M.J., Noah, S.A.: LDA-AdaBoost.MH: accelerated AdaBoost.MH based on latent Dirichlet allocation for text categorization. J. Inf. Sci. 41(1), 27–40 (2015)

    Article  Google Scholar 

  43. Omar, M., On, B.W., Lee, I., Choi, G.S.: LDA topics: representation and evaluation. J. Inf. Sci. 41(5), 1–4 (2015)

    Article  Google Scholar 

  44. Forestier, G., Wemmert, C.: Semi-supervised learning using multiple clusterings with limited labeled data. Inf. Sci. 361(C), 48–65 (2016)

    Article  Google Scholar 

  45. Zhu, J., Wang, H., Tsou, B.K., Ma, M.: Active learning with sampling by uncertainty and density for data annotations. IEEE Trans. Audio Speech Lang. Process. 18(6), 1323–1331 (2010)

    Article  Google Scholar 

  46. Zhu, J., Wang, H., Yao, T., Tsou, B.K.: Active learning with sampling by uncertainty and density for word sense disambiguation and text classification. In: Proceedings of the 22nd International Conference on Computational Linguistics, Manchester, UK, pp. 1137–1144. ACL (2008)

    Google Scholar 

  47. Chen, L., Bao, R., Li, Y., Zhang, K., An, Y., Van, N.N.: An interactive information-retrieval method based on active learning. J. Eng. Sci. Technol. Rev. 10(3), 1–6 (2017)

    Google Scholar 

  48. Tiwari, P., Melucci, M.: Towards a quantum-inspired binary classifier. IEEE Access 7, 42354–42372 (2019). https://doi.org/10.1109/ACCESS.2019.2904624

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No. 2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J., Chen, L., Cui, P. (2021). A Quantum Classifier Based Active Machine Learning for Intelligent Interactive Service. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72795-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72794-9

  • Online ISBN: 978-3-030-72795-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics