Skip to main content

Preconditioned Iteration Method for the Nonlinear Space Fractional Complex Ginzburg-Landau Equation

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

In this work, we give a fast preconditioned numerical method to solve the discreted linear system, which is obtained from the nonlinear space fractional complex Ginzburg-Landau equation. The coefficient matrix of the discreted linear system is the sum of a complex diagonal matrix and a real Toeplitz matrix. The new method has a superiority in computation because we can use the circulant preconditioner and the fast Fourier transform (FFT) to solve the discreted linear system. Numerical examples are tested to illustrate the advantage of the preconditioned numerical method.

Supported by the “Peiyu” Project from Xuzhou University of Technology (Grant Number XKY2019104).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunch, J.R.: Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Stat. Comput. 6, 349–364 (1985)

    Article  MathSciNet  Google Scholar 

  2. Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  Google Scholar 

  3. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  4. Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  Google Scholar 

  5. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO Scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron 26(5), 1079–1085 (2017)

    Article  Google Scholar 

  6. Chen, L., Jiang, D., Song, H., Wang, P., Bao, R., Zhang, K., Li, Y.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)

    Article  Google Scholar 

  7. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system Under QoS constraint: an effective capacity perspective. Mobile Netw. Appl. (2020). https://doi.org/10.1007/s11036-019-01414-4

    Article  Google Scholar 

  8. Ching, W.-K.: Iterative Methods for Queuing and Manufacturing Systems. Springer-Verlag, London (2001)

    Book  Google Scholar 

  9. Davis, P.: Circulant Matrices, 2nd edn. AMS Chelsea, Providence, RI (1994)

    MATH  Google Scholar 

  10. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fractional Calc. Appl. Anal. 1(2), 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Guo, B.-L., Huo, Z.-H.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 16(1), 226–242 (2012)

    MATH  Google Scholar 

  12. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  13. He, D., Pan, K.: An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation. Numer. Algor. 79, 899–925 (2018)

    Article  MathSciNet  Google Scholar 

  14. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 1–21 (2019)

    Google Scholar 

  15. Huo, L., Jiang, D., Qi, S., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. 1–11 (2019)

    Google Scholar 

  16. Huo, L., Jiang, D., Zhu, X., et al.: An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int. J. Commun. Syst. e4092 (2019)

    Google Scholar 

  17. Jiang, D., Huo, L., Lv, Z., et al.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  18. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  19. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220, 160–169 (2017)

    Article  Google Scholar 

  20. Jiang, D., Wang, Y., Lv, Z., et al.: Intelligent Optimization-based reliable energy-efficient networking in cloud services for IIoT networks. IEEE J. Select. Areas Commun. (2019)

    Google Scholar 

  21. Jiang, D., Wang, W., Shi, L., et al.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 5(3), 1–12 (2018)

    Google Scholar 

  22. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. Plos One 13(5), 1–23 (2018)

    Google Scholar 

  23. Jiang, D., Wang, Y., Lv, Z., et al.: Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Google Scholar 

  24. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 1(1), 1–12 (2018)

    MathSciNet  Google Scholar 

  25. Jin, X.-Q.: Developments and Applications of Block Toeplitz Iterative Solvers. The Netherlands, and Science Press, Beijing, China, Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  26. Kailath, T., Sayed, A.H. (eds.): Fast Reliable Algorithms for Matrices with Structure. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  27. Milovanov, A., Rasmussen, J.: Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. 337, 75–80 (2005)

    Article  Google Scholar 

  28. Mvogo, A., Tambue, A., Ben-Bolie, G., Kofane, T.: Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation. Commun. Nonlinear Sci. 39, 396–410 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford, UK (2004)

    MATH  Google Scholar 

  30. Pu, X., Guo, B.: Well-posedness and dynamics for the fractional Ginzburg-Landau equation. Appl. Anal. 92, 318–334 (2013)

    Article  MathSciNet  Google Scholar 

  31. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. 1–10 (2019)

    Google Scholar 

  32. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  33. Tarasov, V., Zaslavsky, G.: Fractional Ginzburg-Landau equation for fractal media. Phys. 354, 249–261 (2005)

    Google Scholar 

  34. Tarasov, V., Zaslavsky, G.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16(2), 023110 (2006)

    Article  MathSciNet  Google Scholar 

  35. Tarasov, V.: Psi-series solution of fractional Ginzburg-Landau equation. J. Phys. A-Math. Gen. 39, 8395–8407 (2006)

    Article  MathSciNet  Google Scholar 

  36. Wang, P., Huang, C.: An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation. J. Comput. Phys. 312, 31–49 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  38. Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. 1–12 (2019)

    Google Scholar 

  39. Wang, Y., Jiang, D., Huo, L., et al.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. 1–10 (2019)

    Google Scholar 

  40. Wang, P., Huang, C.: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation. BIT 58, 783–805 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zhang, K., Chen, L., An, Y., et al.: A QoE test system for vehicular voice cloud services. Mobile Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Chen, L., Song, X. (2021). Preconditioned Iteration Method for the Nonlinear Space Fractional Complex Ginzburg-Landau Equation. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-72795-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72795-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72794-9

  • Online ISBN: 978-3-030-72795-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics