Skip to main content

CADA: Clinical Background and Motivation

  • Conference paper
  • First Online:
Cerebral Aneurysm Detection and Analysis (CADA 2020)

Abstract

Imaging of cerebral aneurysms using DSA, MRI or CTA plays a key role in diagnosis, decision for treatment or observation, treatment planning either as microsurgical clipping or as endovascular intervention including filling of the aneurysm with coils, implantation of flow diverter in the parent vessel or filling the aneurysm with liquid embolic agents. Additionally, imaging is used in long-term follow-up of treated and untreated aneurysms. Imaging tasks and challenges include detection of aneurysms especially of aneurysms smaller than 3 mm, accurate quantitative analysis of geometric parameters assessing size and shape necessary for rupture risk assessment as well as treatment decision and eventually the type of treatment. Finally, image-based computational fluid dynamics analysis of hemodynamic risk parameters requires accurate segmentation and reconstruction of anatomical structures. These objectives motivated us to initiate the Cerebral Aneurysm Detection and Analysis (CADA) challenge. It is based on datasets of 3D rotational angiographies, the “gold standard” for clinical management of cerebral aneurysms. Datasets stem from patients with unruptured and ruptured aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keedy, A.: An overview of intracranial aneurysms. McGill J. Med. 9, 141–146 (2006)

    Google Scholar 

  2. Jeong, Y.-G., Jung, Y.-T., Kim, M.-S., Eun, C.-K., Jang, S.-H.: Size and location of ruptured intracranial aneurysms. J. Korean Neurosurg. Soc. 45, 11–15 (2009)

    Article  Google Scholar 

  3. Thompson, B.G., Brown, R.D., Amin-Hanjani, S., et al.: Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 46, 2368–2400 (2015)

    Article  Google Scholar 

  4. Brisman, J.L., Song, J.K., Newell, D.W.: Cerebral aneurysms. N. Engl. J. Med. 355, 928–939 (2006)

    Article  Google Scholar 

  5. Vlak, M.H.M., Algra, A., Brandenburg, R.J.E., Rinkel, G.J.: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011)

    Article  Google Scholar 

  6. Suarez, J., Tarr, R.W., Selman, W.R.: Aneurysmal subarachnoid hemorrhage. N. Engl. J. Med. 354, 387–396 (2006)

    Article  Google Scholar 

  7. Steiner, T., Juvela, S., Unterberg, A., et al.: European stroke organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc. Dis. 35, 93–112 (2013)

    Article  Google Scholar 

  8. Wiebers, D.O., Whisnant, J.P., Huston, J., Meissner, I., Brown, R.D., Piepgras, D.G., et al.: Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003)

    Article  Google Scholar 

  9. Morita, A., Kirino, T., Hashi, K., et al.: The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med. 366, 2474–2482 (2012)

    Article  Google Scholar 

  10. Mokin, M., Waqas, M., Gong, A., et al.: What size cerebral aneurysms rupture? A systematic review and meta-analysis of literature. Neurosurgery 66(1), 145–146 (2019)

    Google Scholar 

  11. Beck, J., Rhode, S., Berkefeld, J., et al.: Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg. Neurol. 65, 18–25 (2006)

    Article  Google Scholar 

  12. Clarke, M.: Systematic review of reviews of risk factors for intracranial aneurysms. Neuroradiology 50, 653–664 (2008)

    Article  Google Scholar 

  13. Greving, J.P., Wermer, M.J.H., Brown, R.D., et al.: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 13, 59–66 (2014)

    Article  Google Scholar 

  14. Backes, D., Vergouwen, M.D.I., Tiel Groenestege, A.T., et al.: PHASES score for prediction of intracranial aneurysm growth. Stroke 46, 1221–1226 (2015)

    Article  Google Scholar 

  15. Bijlenga, P., Gondar, R., Schilling, S., et al.: PHASES score for the management of intracranial aneurysm: a cross-sectional population-based retrospective study. Stroke 48, 2105–2112 (2017)

    Article  Google Scholar 

  16. Darsaut, T., Fahed, R., Raymond, J.: PHASES and the natural history of unruptured aneurysms: science or pseudoscience? J Neurointerv. Surg. 9, 527–528 (2017)

    Article  Google Scholar 

  17. Howard, B.M., Hu, R., Barrow, J.W., et al.: Comprehensive review of imaging of intracranial aneurysms and angiographically negative subarachnoid hemorrhage. Neurosurg. Focus 47, 1–3 (2019)

    Article  Google Scholar 

  18. Goubergrits, L., et al.: Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) - uncertainty quantification of geometric rupture risk parameters. Biomed. Eng. Online 18, 35 (2019)

    Article  Google Scholar 

  19. Goubergrits, L., Schaller, J., Kertzscher, U., Woelken, Th., Ringelstein, M., Spuler, A.: Hemodynamic impact of cerebral aneurysm endovascular treatment devices: coils and flow diverters. Expert Rev. Med. Devices 11, 361–373 (2014)

    Google Scholar 

  20. Xiang, J., Yu, J., Choi, H., Dolan Fox, J.M., et al.: Rupture resemblance score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg. 7, 490–495 (2015)

    Article  Google Scholar 

  21. Dhar, S., Tremmel, M., Mocco, J., et al.: Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63, 185–196 (2008)

    Article  Google Scholar 

  22. Xiang, J., Natarajan, S.K., Tremmel, M., et al.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011)

    Article  Google Scholar 

  23. Cebral, J.R., Mut, F., Weir, J., et al.: Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am. J. Neuroradiol. 32, 145–151 (2011)

    Article  Google Scholar 

  24. Jou, L.D., Lee, D.H., Morsi, H., et al.: Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am. J. Neuroradiol. 29, 1761–1767 (2008)

    Article  Google Scholar 

  25. Dammert, S., Krings, T., Moller-Hartmann, W., et al.: Detection of intracranial aneurysms with multislice CT: comparison with conventional angiography. Neuroradiology 46, 427–434 (2004)

    Article  Google Scholar 

  26. Thompson, B.G., et al.: Guidelines for the management of patients with unruptured intracranial aneurysms. Stroke 46, 2368–2400 (2015)

    Article  Google Scholar 

  27. Wang, H., Li, W., He, H., et al.: 320-Detector row CT angiography for detection and evaluation of intracranial aneurysms: comparison with conventional digital subtraction angiography. Clin. Radiol. 68, e15–e20 (2013)

    Article  Google Scholar 

  28. Chappell, E.T., Moure, F.C., Good, M.C.: Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta-analysis. Neurosurgery 52, 624–631 (2003)

    Article  Google Scholar 

  29. Li, M.H., Cheng, Y.S., Li, Y.D., et al.: Large-cohort comparison between three-dimensional time-of-flight magnetic resonance and rotational digital subtraction angiographies in intracranial aneurysm detection. Stroke 40, 3127–3129 (2009)

    Article  Google Scholar 

  30. Agid, R., Schaaf, M., Farb, R.: CE-MRA for follow-up of aneurysms post stent-assisted coiling. Interv. Neuroradiol. 18, 275–283 (2012)

    Article  Google Scholar 

  31. Hacein-Bey, L., Provenzale, J.M.: Current imaging assessment and treatment of intracranial aneurysms. AJR 196, 32–44 (2011)

    Article  Google Scholar 

  32. Lasheras, J.C.: The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Heros, R.C., Morcos, J.J.: Cerebrovascular surgery: past, present, and future. Neurosurgery 47, 1007–1033 (2000)

    Article  Google Scholar 

  34. Polevaya, N.V., Kalani, M.Y.S., Steinberg, G.K., et al.: The transition from hunterian ligation to intracranial aneurysm clips: a historical perspective. Neurosurg. Focus 20, 1–7 (2006)

    Article  Google Scholar 

  35. Darsaut, T.E., Bing, F., Salazkin, I., et al.: Testing flow diverters in giant fusiform aneurysms: a new experimental model can show leaks responsible for failures. AJNR Am. J. Neuroradiol. 32, 2175–2179 (2011)

    Article  Google Scholar 

  36. Augsburger, L., Reymond, P., Rufenacht, D.A., et al.: Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed. Eng. 39, 850–863 (2011)

    Article  Google Scholar 

  37. Lanzino, G., Kanaan, Y., Perrini, P., et al.: Emerging concepts in the treatment of intracranial aneurysms: stents, coated coils, and liquid embolic agents. Neurosurgery 57, 449–459 (2005)

    Article  Google Scholar 

  38. Brilstra, E.H., Rinkel, G.J., van der Graaf, Y., et al.: Treatment of intracranial aneurysms by embolization with coils: a systematic review. Stroke 30, 470–476 (1999)

    Article  Google Scholar 

  39. David, C.A., Vishteh, A.G., Spetzler, R.F., et al.: Late angiographic follow-up review of surgically treated aneurysms. J. Neurosurg. 91, 396–401 (1999)

    Article  Google Scholar 

  40. Brown, M.A., Parish, J., Guandique, C.F., et al.: A long-term study of durability and risk factors for aneurysm recurrence after microsurgical clip ligation. J. Neurosurg. 126, 819–824 (2017)

    Article  Google Scholar 

  41. Colby, G.P., Paul, A.R., Radvany, M.G., et al.: A single center comparison of coiling versus stent assisted coiling in 90 consecutive paraophthalmic region aneurysm. J. Neurointerv. Surg. 4, 116–120 (2012)

    Article  Google Scholar 

  42. Campos, J.K., Cheaney Ii, B., Lien, B.V., et al.: Advances in endovascular aneurysm management: flow modulation techniques with braided mesh devices. Stroke Vasc. Neurol. 5, 1–3 (2020)

    Article  Google Scholar 

  43. Burkhardt, J.-K., Chua, M.H.J., Miriam Weiss, M., et al.: Risk of aneurysm residual regrowth, recurrence, and de novo aneurysm formation after microsurgical clip occlusion based on follow-up with catheter angiography. World Neurosurg. 106, 74–84 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Goubergrits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spuler, A., Goubergrits, L. (2021). CADA: Clinical Background and Motivation. In: Hennemuth, A., Goubergrits, L., Ivantsits, M., Kuhnigk, JM. (eds) Cerebral Aneurysm Detection and Analysis. CADA 2020. Lecture Notes in Computer Science(), vol 12643. Springer, Cham. https://doi.org/10.1007/978-3-030-72862-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72862-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72861-8

  • Online ISBN: 978-3-030-72862-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics