Abstract
Combinatorial optimization is an important application targeted by quantum computing. However, near-term hardware constraints make quantum algorithms unlikely to be competitive when compared to high-performing classical heuristics on large practical problems. One option to achieve advantages with near-term devices is to use them in combination with classical heuristics. In particular, we propose using quantum methods to sample from classically intractable distributions – which is the most probable approach to attain a true provable quantum separation in the near-term – which are used to solve optimization problems faster. We numerically study this enhancement by an adaptation of Tabu Search using the Quantum Approximate Optimization Algorithm (QAOA) as a neighborhood sampler. We show that QAOA provides a flexible tool for exploration-exploitation in such hybrid settings and can provide evidence that it can help in solving problems faster by saving many tabu iterations and achieving better solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
When using BIPOP-CMAES, we run circuits with 1000 measurements to estimate expectation values. The optimizer stops when it has reached 2000 evaluations. We obtained great performances in terms of averaged ratios (as the evaluations divided by the optimum of the subproblem), superior to 0.97 at the considered depths.
References
Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5
Arute, F., et al.: Quantum approximate optimization of non-planar graph problems on a planar superconducting processor (2020)
Bäck, T.: Evolutionary Algorithms in Theory and Practice - Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2019)
Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990). http://www.jstor.org/stable/2582903
Beasley, J.: QUBO instances link - file bqpgka.txt. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019). https://doi.org/10.1088/2058-9565/ab4eb5
Beyer, H.: The theory of evolution strategies. In: Natural Computing Series. Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04378-3
Booth, M., Reinhardt, S.P.: Partitioning optimization problems for hybrid classical/quantum execution technical report (2017)
Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances arXiv:1812.04170 (2018)
Bravyi, S., Gosset, D., König, R.: Quantum advantage with shallow circuits. Science 362(6412), 308–311 (2018). https://doi.org/10.1126/science.aar3106, https://science.sciencemag.org/content/362/6412/308
Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6 (2016). https://doi.org/10.1103/PhysRevX.6.021043, https://link.aps.org/doi/10.1103/PhysRevX.6.021043
Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). https://arxiv.org/abs/1811.08419
Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1+(\(\lambda \), \(\lambda \))) genetic algorithm. Algorithmica 80(5), 1658–1709 (2018). https://doi.org/10.1007/s00453-017-0354-9
Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Bosman, P.A.N. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 777–784. ACM (2017). https://doi.org/10.1145/3071178.3071301
Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281, October 2018. https://arxiv.org/abs/1810.05281
Dunjko, V., Ge, Y., Cirac, J.I.: Computational speedups using small quantum devices. Phys. Rev. Lett. 121, 250501 (2018). https://doi.org/10.1103/PhysRevLett.121.250501, https://link.aps.org/doi/10.1103/PhysRevLett.121.250501
Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2020)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014)
Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016)
Glover, F., Hao, J.K.: Efficient evaluations for solving large 0–1 unconstrained quadratic optimisation problems. Int. J. Metaheuristics 1(1), 3–10 (2010). https://doi.org/10.1504/IJMHEUR.2010.033120
Glover, F., Kochenberger, G., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998). https://doi.org/10.1287/mnsc.44.3.336
Glover, F.W.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 1537–1544. Springer, US, Boston, MA (2013). https://doi.org/10.1007/978-1-4419-1153-7_1034
Glover, F.W., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR 8, 239–253 (2010)
Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: ACM-GECCO Genetic and Evolutionary Computation Conference. Montreal, Canada, July 2009. https://hal.inria.fr/inria-00382093
Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017). https://doi.org/10.1038/nature23879
Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0
Kochenberger, G.A., Glover, F.: A unified framework for modeling and solving combinatorial optimization problems: a tutorial. Multiscale Optim. Methods Appl. 101–124. Springer, US, Boston, MA (2006). https://doi.org/10.1007/0-387-29550-X_4
Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-output sequences. Soft. Comput. 15(9), 1675–1687 (2011)
Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2(2), 023074 (2019)
Lü, Z., Glover, F.W., Hao, J.K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)
Medvidovic, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm (2020)
Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.1088/2058-9565/aab822
Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards algorithm selection in near-term quantum optimization. Quantum Sci. Technol. 5(4), 044009 (2020). https://doi.org/10.1088/2058-9565/abb8e5
Niko, A., Yoshihikoueno, Y., Brockhoff, D., Chan, M.: ARF1: CMA-ES/pycma: r3.0.3, April 2020. https://doi.org/10.5281/zenodo.3764210
Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004). https://doi.org/10.1023/B:ANOR.0000039522.58036.68
Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica (Vilnius) 17(2), 279–296 (2006)
Peng, T., Harrow, A.W., Ozols, M., Wu, X.: Simulating large quantum circuits on a small quantum computer. Phys. Rev. Lett. 125(15), 150504 (2020). https://doi.org/10.1103/PhysRevLett.125.150504, https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Rennela, M., Laarman, A., Dunjko, V.: Hybrid divide-and-conquer approach for tree search algorithms (2020)
Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 65, 845–869 (2016)
Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing, arXiv:1901.01903 (2019)
Wang, Y., Lü, Z., Glover, F.W., Hao, J.K.: Path relinking for unconstrained binary quadratic programming. Eur. J. Oper. Res. 223, 595–604 (2012)
Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: Proceeding of Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 1452–1459. ACM (2007). https://doi.org/10.1145/1276958.1277224
Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Benchmarking the quantum approximate optimization algorithm. Quantum Inf. Process. 19(7), 197 (2020). https://doi.org/10.1007/s11128-020-02692-8
Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices, arXiv:1812.01041 (2018)
Acknowledgements
CM, TB and VD acknowledge support from Total. This work was supported by the Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium programme (project number 024.003.037). This research is also supported by the project NEASQC funded from the European Union’s Horizon 2020 research and innovation programme (grant agreement No 951821).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Moussa, C., Wang, H., Calandra, H., Bäck, T., Dunjko, V. (2021). Tabu-Driven Quantum Neighborhood Samplers. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-72904-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72903-5
Online ISBN: 978-3-030-72904-2
eBook Packages: Computer ScienceComputer Science (R0)