Skip to main content

Tabu-Driven Quantum Neighborhood Samplers

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12692))

Abstract

Combinatorial optimization is an important application targeted by quantum computing. However, near-term hardware constraints make quantum algorithms unlikely to be competitive when compared to high-performing classical heuristics on large practical problems. One option to achieve advantages with near-term devices is to use them in combination with classical heuristics. In particular, we propose using quantum methods to sample from classically intractable distributions – which is the most probable approach to attain a true provable quantum separation in the near-term – which are used to solve optimization problems faster. We numerically study this enhancement by an adaptation of Tabu Search using the Quantum Approximate Optimization Algorithm (QAOA) as a neighborhood sampler. We show that QAOA provides a flexible tool for exploration-exploitation in such hybrid settings and can provide evidence that it can help in solving problems faster by saving many tabu iterations and achieving better solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When using BIPOP-CMAES, we run circuits with 1000 measurements to estimate expectation values. The optimizer stops when it has reached 2000 evaluations. We obtained great performances in terms of averaged ratios (as the evaluations divided by the optimum of the subproblem), superior to 0.97 at the considered depths.

References

  1. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  Google Scholar 

  2. Arute, F., et al.: Quantum approximate optimization of non-planar graph problems on a planar superconducting processor (2020)

    Google Scholar 

  3. Bäck, T.: Evolutionary Algorithms in Theory and Practice - Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  4. Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using CVaR. Quantum 4, 256 (2019)

    Article  Google Scholar 

  5. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990). http://www.jstor.org/stable/2582903

  6. Beasley, J.: QUBO instances link - file bqpgka.txt. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html

  7. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019). https://doi.org/10.1088/2058-9565/ab4eb5

    Article  Google Scholar 

  8. Beyer, H.: The theory of evolution strategies. In: Natural Computing Series. Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04378-3

  9. Booth, M., Reinhardt, S.P.: Partitioning optimization problems for hybrid classical/quantum execution technical report (2017)

    Google Scholar 

  10. Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances arXiv:1812.04170 (2018)

  11. Bravyi, S., Gosset, D., König, R.: Quantum advantage with shallow circuits. Science 362(6412), 308–311 (2018). https://doi.org/10.1126/science.aar3106, https://science.sciencemag.org/content/362/6412/308

  12. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6 (2016). https://doi.org/10.1103/PhysRevX.6.021043, https://link.aps.org/doi/10.1103/PhysRevX.6.021043

  13. Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). https://arxiv.org/abs/1811.08419

  14. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1+(\(\lambda \), \(\lambda \))) genetic algorithm. Algorithmica 80(5), 1658–1709 (2018). https://doi.org/10.1007/s00453-017-0354-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Bosman, P.A.N. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 777–784. ACM (2017). https://doi.org/10.1145/3071178.3071301

  16. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281, October 2018. https://arxiv.org/abs/1810.05281

  17. Dunjko, V., Ge, Y., Cirac, J.I.: Computational speedups using small quantum devices. Phys. Rev. Lett. 121, 250501 (2018). https://doi.org/10.1103/PhysRevLett.121.250501, https://link.aps.org/doi/10.1103/PhysRevLett.121.250501

  18. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2020)

    Article  Google Scholar 

  19. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014)

    Google Scholar 

  20. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016)

    Google Scholar 

  21. Glover, F., Hao, J.K.: Efficient evaluations for solving large 0–1 unconstrained quadratic optimisation problems. Int. J. Metaheuristics 1(1), 3–10 (2010). https://doi.org/10.1504/IJMHEUR.2010.033120

    Article  MathSciNet  MATH  Google Scholar 

  22. Glover, F., Kochenberger, G., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998). https://doi.org/10.1287/mnsc.44.3.336

    Article  MATH  Google Scholar 

  23. Glover, F.W.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 1537–1544. Springer, US, Boston, MA (2013). https://doi.org/10.1007/978-1-4419-1153-7_1034

  24. Glover, F.W., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR 8, 239–253 (2010)

    Article  MathSciNet  Google Scholar 

  25. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In: ACM-GECCO Genetic and Evolutionary Computation Conference. Montreal, Canada, July 2009. https://hal.inria.fr/inria-00382093

  26. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017). https://doi.org/10.1038/nature23879

    Article  Google Scholar 

  27. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Kochenberger, G.A., Glover, F.: A unified framework for modeling and solving combinatorial optimization problems: a tutorial. Multiscale Optim. Methods Appl. 101–124. Springer, US, Boston, MA (2006). https://doi.org/10.1007/0-387-29550-X_4

  29. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-output sequences. Soft. Comput. 15(9), 1675–1687 (2011)

    Article  Google Scholar 

  30. Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2(2), 023074 (2019)

    Article  Google Scholar 

  31. Lü, Z., Glover, F.W., Hao, J.K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)

    Article  MathSciNet  Google Scholar 

  32. Medvidovic, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm (2020)

    Google Scholar 

  33. Moll, N., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.1088/2058-9565/aab822

    Article  Google Scholar 

  34. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards algorithm selection in near-term quantum optimization. Quantum Sci. Technol. 5(4), 044009 (2020). https://doi.org/10.1088/2058-9565/abb8e5

    Article  Google Scholar 

  35. Niko, A., Yoshihikoueno, Y., Brockhoff, D., Chan, M.: ARF1: CMA-ES/pycma: r3.0.3, April 2020. https://doi.org/10.5281/zenodo.3764210

  36. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004). https://doi.org/10.1023/B:ANOR.0000039522.58036.68

    Article  MathSciNet  MATH  Google Scholar 

  37. Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica (Vilnius) 17(2), 279–296 (2006)

    Article  MathSciNet  Google Scholar 

  38. Peng, T., Harrow, A.W., Ozols, M., Wu, X.: Simulating large quantum circuits on a small quantum computer. Phys. Rev. Lett. 125(15), 150504 (2020). https://doi.org/10.1103/PhysRevLett.125.150504, https://link.aps.org/doi/10.1103/PhysRevLett.125.150504

  39. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  40. Rennela, M., Laarman, A., Dunjko, V.: Hybrid divide-and-conquer approach for tree search algorithms (2020)

    Google Scholar 

  41. Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 65, 845–869 (2016)

    Article  MathSciNet  Google Scholar 

  42. Streif, M., Leib, M.: Comparison of QAOA with quantum and simulated annealing, arXiv:1901.01903 (2019)

  43. Wang, Y., Lü, Z., Glover, F.W., Hao, J.K.: Path relinking for unconstrained binary quadratic programming. Eur. J. Oper. Res. 223, 595–604 (2012)

    Article  MathSciNet  Google Scholar 

  44. Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: Proceeding of Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 1452–1459. ACM (2007). https://doi.org/10.1145/1276958.1277224

  45. Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Benchmarking the quantum approximate optimization algorithm. Quantum Inf. Process. 19(7), 197 (2020). https://doi.org/10.1007/s11128-020-02692-8

    Article  MathSciNet  Google Scholar 

  46. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices, arXiv:1812.01041 (2018)

Download references

Acknowledgements

CM, TB and VD acknowledge support from Total. This work was supported by the Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium programme (project number 024.003.037). This research is also supported by the project NEASQC funded from the European Union’s Horizon 2020 research and innovation programme (grant agreement No 951821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Moussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moussa, C., Wang, H., Calandra, H., Bäck, T., Dunjko, V. (2021). Tabu-Driven Quantum Neighborhood Samplers. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics