Abstract
Flowshop problems (FSPs) have many variants and a broad set of heuristics proposed to solve them. Choosing the best heuristic and its parameters for a given FSP instance can be very challenging for practitioners. Per-instance Algorithm Configuration (PIAC) approaches aim at recommending the best algorithm configuration for a particular instance problem. This paper presents a PIAC methodology for building models to automatically configure the Nawaz, Encore, and Ham (NEH) algorithm which proved to be a good choice in most FSP variants (especially when they are used to provide initial solutions). We use irace to build the performance dataset (problem features \(\leftrightarrow \) algorithm configuration), while training Decision Tree and Random Forest models to recommend NEH configurations on unseen problems of the test set. Results show that the recommended heuristics have good performance, especially those by random forest models considering parameter dependencies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The global best NEH found by irace uses the hill-sorted absolute difference of processing times with NM tie-breaking strategy.
- 2.
Source code and supplementary material link: https://github.com/lucasmpavelski/flowshop-neh-based-heuristic-recommendation.
References
Alfaro-Fernández, P., Ruiz, R., Pagnozzi, F., Stützle, T.: Automatic algorithm design for hybrid flowshop scheduling problems. Eur. J. Oper. Res. 282(3), 835–845 (2020). https://doi.org/10.1016/j.ejor.2019.10.004
Baker, K.R., Trietsch, D.: Appendix A: practical processing time distributions. Principles of Sequencing and Scheduling, pp. 445–458. John Wiley & Sons Ltd., Hoboken (2009). https://doi.org/10.1002/9780470451793.app1
Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley Publishing, New Jersey (2009)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Brum, A., Ritt, M.: Automatic algorithm configuration for the permutation flow shop scheduling problem minimizing total completion time. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 85–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7_6
Brum, A., Ritt, M.: Automatic design of heuristics for minimizing the makespan in permutation flow shops. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, July 2018. https://doi.org/10.1109/CEC.2018.8477787
Burcin Ozsoydan, F., Sağir, M.: Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: a case study at a manufacturing plant. Comput. Oper. Res. 125, 105044 (2021). https://doi.org/10.1016/j.cor.2020.105044
Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_14
Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n job, m machine sequencing problem. Manage. Sci. 16(10), B630–B637 (1970)
Czogalla, J., Fink, A.: Fitness landscape analysis for the no-wait flow-shop scheduling problem. J. Heuristics 18(1), 25–51 (2012). https://doi.org/10.1007/s10732-010-9155-x
Dannenbring, D.G.: An evaluation of flow shop sequencing heuristics. Manage. Sci. 23(11), 1174–1182 (1977). https://doi.org/10.1287/mnsc.23.11.1174
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(1), 1–30 (2006)
Dong, X., Huang, H., Chen, P.: An improved NEH-based heuristic for the permutation flowshop problem. Comput. Oper. Res. 35(12), 3962–3968 (2008). https://doi.org/10.1016/j.cor.2007.05.005
Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. GECCO 2011, pp. 2019–2026. Association for Computing Machinery, New York, NY, USA, July 2011. https://doi.org/10.1145/2001576.2001847
Emmons, H., Vairaktarakis, G.: Theoretical results, algorithms, and applications. In: Flow Shop Scheduling. International Series in Operations Research & Management Science, vol. 182, 11th edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5152-5
Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Buyukdagli, O.: A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 40(7), 1729–1743 (2013). https://doi.org/10.1016/j.cor.2013.01.005
Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations through ablation. J. Heuristics 22(4), 431–458 (2016). https://doi.org/10.1007/s10732-014-9275-9
Fernandez-Viagas, V., Framinan, J.M.: On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Comput. Oper. Res. 45, 60–67 (2014). https://doi.org/10.1016/j.cor.2013.12.012
Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. J. Oper. Res. Soc. 55(12), 1243–1255 (2004). https://doi.org/10.1057/palgrave.jors.2601784
Framinan, J.M., Leisten, R., Rajendran, C.: Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem. Int. J. Prod. Res. 41(1), 121–148 (2003). https://doi.org/10.1080/00207540210161650
Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)
Hernando, L., Daolio, F., Veerapen, N., Ochoa, G.: Local optima networks of the permutation flowshop scheduling problem: makespan vs. total flow time. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1964–1971. IEEE, San Sebastian, Spain, June 2017. https://doi.org/10.1109/CEC.2017.7969541
Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, San Francisco, USA (2004)
Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval Res. Logistics Q. 1(1), 61–68 (1954). https://doi.org/10.1002/nav.3800010110
Kalczynski, P.J., Kamburowski, J.: An improved NEH heuristic to minimize makespan in permutation flow shops. Comput. Oper. Res. 35(9), 3001–3008 (2008). https://doi.org/10.1016/j.cor.2007.01.020
Kalczynski, P.J., Kamburowski, J.: An empirical analysis of the optimality rate of flow shop heuristics. Eur. J. Oper. Res. 198(1), 93–101 (2009). https://doi.org/10.1016/j.ejor.2008.08.021
Kalczynski, P.J., Kamburowski, J.: On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega 35(1), 53–60 (2007). https://doi.org/10.1016/j.omega.2005.03.003
Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). https://doi.org/10.1162/evco_a_00242
Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the P//\(\sum {C}_i\) scheduling problem. Eur. J. Oper. Res. 132(2), 439–452 (2001). https://doi.org/10.1016/S0377-2217(00)00137-5
Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_18
Marmion, M.-E., Regnier-Coudert, O.: Fitness landscape of the factoradic representation on the permutation flowshop scheduling problem. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 151–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_14
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput. Oper. Res. 51, 190–199 (2014). https://doi.org/10.1016/j.cor.2014.05.020
Nagano, M.S., Moccellin, J.V.: A high quality solution constructive heuristic for flow shop sequencing. J. Oper. Res. Soc. 53(12), 1374–1379 (2002)
Nagano, M.S., Rossi, F.L., Martarelli, N.J.: High-performing heuristics to minimize flowtime in no-idle permutation flowshop. Eng. Optim. 51(2), 185–198 (2019). https://doi.org/10.1080/0305215X.2018.1444163
Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983). https://doi.org/10.1016/0305-0483(83)90088-9
Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_20
Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total time–a quick method of obtaining a near optimum. J. Oper. Res. Soc. 16(1), 101–107 (1965). https://doi.org/10.1057/jors.1965.8
Pan, Q.K., Wang, L., Zhao, B.H.: An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion. Int. J. Adv. Manuf. Technol. 38(7), 778–786 (2008). https://doi.org/10.1007/s00170-007-1120-y
Pavelski, L.M., Delgado, M.R., Kessaci, M.É.: Meta-learning on flowshop using fitness landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019, pp. 925–933. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3321707.3321846
Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total flowtime. Int. J. Prod. Econ. 29(1), 65–73 (1993). https://doi.org/10.1016/0925-5273(93)90024-F
Reeves, C.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999). https://doi.org/10.1023/A:1018983524911
Ribas, I., Companys, R., Tort-Martorell, X.: Comparing three-step heuristics for the permutation flow shop problem. Comput. Oper. Res. 37(12), 2062–2070 (2010). https://doi.org/10.1016/j.cor.2010.02.006
Rice, J.R.: The algorithm selection problem. In: Rubinoff, M., Yovits, M.C. (eds.) Advances in Computers, Advances in Computers, vol. 15, pp. 65–118. Elsevier, Washington, DC, USA (1976). https://doi.org/10.1016/S0065-2458(08)60520-3, iSSN: 0065-2458
Rodriguez, J.A.V., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform machines. In: Baptiste, P., Kendall, G., Munier-Kordon, A., Sourd, F. (eds.) In proceedings of the 3rd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2007), pp. 506–513. Paris, France (2007), issue: 0
Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005). https://doi.org/10.1016/j.ejor.2004.04.017
Stinson, J.P., Smith, A.W.: A heuristic proǵramminǵ procedure for sequencinǵ the static flowshop. Int. J. Prod. Res. 20(6), 753–764 (1982). https://doi.org/10.1080/00207548208947802
Taillard, É.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47(1), 65–74 (1990). https://doi.org/10.1016/0377-2217(90)90090-X
Taillard, É.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M
Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop scheduling problems minimising makespan. Eur. J. Oper. Res. 240(3), 666–677 (2015). https://doi.org/10.1016/j.ejor.2014.07.033
Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)
Watson, J.P., Barbulescu, L., Howe, A.E., Whitley, L.D.: Algorithm performance and problem structure for flow-shop scheduling. In: AAAI/IAAI, pp. 688–695. American Association for Artificial Intelligence, Menlo Park, CA, USA (1999)
Yahyaoui, H., Krichen, S., Derbel, B., Talbi, E.G.: A hybrid ILS-VND based hyper-heuristic for permutation flowshop scheduling problem. Procedia Comput. Sci. 60, 632–641 (2015). https://doi.org/10.1016/j.procs.2015.08.199
Acknowledgments
M. Delgado acknowledges CNPq (a Brazilian research-funding agency) for her partial financial support, grants 309935/2017-2 and 439226/2018-0.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pavelski, L.M., Kessaci, MÉ., Delgado, M. (2021). Flowshop NEH-Based Heuristic Recommendation. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-72904-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72903-5
Online ISBN: 978-3-030-72904-2
eBook Packages: Computer ScienceComputer Science (R0)