Skip to main content

Flowshop NEH-Based Heuristic Recommendation

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Abstract

Flowshop problems (FSPs) have many variants and a broad set of heuristics proposed to solve them. Choosing the best heuristic and its parameters for a given FSP instance can be very challenging for practitioners. Per-instance Algorithm Configuration (PIAC) approaches aim at recommending the best algorithm configuration for a particular instance problem. This paper presents a PIAC methodology for building models to automatically configure the Nawaz, Encore, and Ham (NEH) algorithm which proved to be a good choice in most FSP variants (especially when they are used to provide initial solutions). We use irace to build the performance dataset (problem features \(\leftrightarrow \) algorithm configuration), while training Decision Tree and Random Forest models to recommend NEH configurations on unseen problems of the test set. Results show that the recommended heuristics have good performance, especially those by random forest models considering parameter dependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The global best NEH found by irace uses the hill-sorted absolute difference of processing times with NM tie-breaking strategy.

  2. 2.

    Source code and supplementary material link: https://github.com/lucasmpavelski/flowshop-neh-based-heuristic-recommendation.

References

  1. Alfaro-Fernández, P., Ruiz, R., Pagnozzi, F., Stützle, T.: Automatic algorithm design for hybrid flowshop scheduling problems. Eur. J. Oper. Res. 282(3), 835–845 (2020). https://doi.org/10.1016/j.ejor.2019.10.004

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, K.R., Trietsch, D.: Appendix A: practical processing time distributions. Principles of Sequencing and Scheduling, pp. 445–458. John Wiley & Sons Ltd., Hoboken (2009). https://doi.org/10.1002/9780470451793.app1

    Chapter  MATH  Google Scholar 

  3. Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley Publishing, New Jersey (2009)

    Book  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Brum, A., Ritt, M.: Automatic algorithm configuration for the permutation flow shop scheduling problem minimizing total completion time. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 85–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7_6

    Chapter  Google Scholar 

  6. Brum, A., Ritt, M.: Automatic design of heuristics for minimizing the makespan in permutation flow shops. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, July 2018. https://doi.org/10.1109/CEC.2018.8477787

  7. Burcin Ozsoydan, F., Sağir, M.: Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: a case study at a manufacturing plant. Comput. Oper. Res. 125, 105044 (2021). https://doi.org/10.1016/j.cor.2020.105044

    Article  MathSciNet  Google Scholar 

  8. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_14

    Chapter  Google Scholar 

  9. Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n job, m machine sequencing problem. Manage. Sci. 16(10), B630–B637 (1970)

    Article  Google Scholar 

  10. Czogalla, J., Fink, A.: Fitness landscape analysis for the no-wait flow-shop scheduling problem. J. Heuristics 18(1), 25–51 (2012). https://doi.org/10.1007/s10732-010-9155-x

    Article  MATH  Google Scholar 

  11. Dannenbring, D.G.: An evaluation of flow shop sequencing heuristics. Manage. Sci. 23(11), 1174–1182 (1977). https://doi.org/10.1287/mnsc.23.11.1174

    Article  MATH  Google Scholar 

  12. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(1), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Dong, X., Huang, H., Chen, P.: An improved NEH-based heuristic for the permutation flowshop problem. Comput. Oper. Res. 35(12), 3962–3968 (2008). https://doi.org/10.1016/j.cor.2007.05.005

    Article  MATH  Google Scholar 

  14. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. GECCO 2011, pp. 2019–2026. Association for Computing Machinery, New York, NY, USA, July 2011. https://doi.org/10.1145/2001576.2001847

  15. Emmons, H., Vairaktarakis, G.: Theoretical results, algorithms, and applications. In: Flow Shop Scheduling. International Series in Operations Research & Management Science, vol. 182, 11th edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5152-5

  16. Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Buyukdagli, O.: A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 40(7), 1729–1743 (2013). https://doi.org/10.1016/j.cor.2013.01.005

    Article  MATH  Google Scholar 

  17. Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations through ablation. J. Heuristics 22(4), 431–458 (2016). https://doi.org/10.1007/s10732-014-9275-9

    Article  Google Scholar 

  18. Fernandez-Viagas, V., Framinan, J.M.: On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Comput. Oper. Res. 45, 60–67 (2014). https://doi.org/10.1016/j.cor.2013.12.012

    Article  MathSciNet  MATH  Google Scholar 

  19. Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. J. Oper. Res. Soc. 55(12), 1243–1255 (2004). https://doi.org/10.1057/palgrave.jors.2601784

    Article  MATH  Google Scholar 

  20. Framinan, J.M., Leisten, R., Rajendran, C.: Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem. Int. J. Prod. Res. 41(1), 121–148 (2003). https://doi.org/10.1080/00207540210161650

    Article  MATH  Google Scholar 

  21. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MathSciNet  Google Scholar 

  22. Hernando, L., Daolio, F., Veerapen, N., Ochoa, G.: Local optima networks of the permutation flowshop scheduling problem: makespan vs. total flow time. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1964–1971. IEEE, San Sebastian, Spain, June 2017. https://doi.org/10.1109/CEC.2017.7969541

  23. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, San Francisco, USA (2004)

    MATH  Google Scholar 

  24. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval Res. Logistics Q. 1(1), 61–68 (1954). https://doi.org/10.1002/nav.3800010110

    Article  MATH  Google Scholar 

  25. Kalczynski, P.J., Kamburowski, J.: An improved NEH heuristic to minimize makespan in permutation flow shops. Comput. Oper. Res. 35(9), 3001–3008 (2008). https://doi.org/10.1016/j.cor.2007.01.020

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalczynski, P.J., Kamburowski, J.: An empirical analysis of the optimality rate of flow shop heuristics. Eur. J. Oper. Res. 198(1), 93–101 (2009). https://doi.org/10.1016/j.ejor.2008.08.021

    Article  MATH  Google Scholar 

  27. Kalczynski, P.J., Kamburowski, J.: On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega 35(1), 53–60 (2007). https://doi.org/10.1016/j.omega.2005.03.003

    Article  Google Scholar 

  28. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). https://doi.org/10.1162/evco_a_00242

    Article  Google Scholar 

  29. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the P//\(\sum {C}_i\) scheduling problem. Eur. J. Oper. Res. 132(2), 439–452 (2001). https://doi.org/10.1016/S0377-2217(00)00137-5

    Article  MATH  Google Scholar 

  30. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_18

    Chapter  Google Scholar 

  31. Marmion, M.-E., Regnier-Coudert, O.: Fitness landscape of the factoradic representation on the permutation flowshop scheduling problem. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 151–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_14

    Chapter  Google Scholar 

  32. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput. Oper. Res. 51, 190–199 (2014). https://doi.org/10.1016/j.cor.2014.05.020

    Article  MathSciNet  MATH  Google Scholar 

  33. Nagano, M.S., Moccellin, J.V.: A high quality solution constructive heuristic for flow shop sequencing. J. Oper. Res. Soc. 53(12), 1374–1379 (2002)

    Article  Google Scholar 

  34. Nagano, M.S., Rossi, F.L., Martarelli, N.J.: High-performing heuristics to minimize flowtime in no-idle permutation flowshop. Eng. Optim. 51(2), 185–198 (2019). https://doi.org/10.1080/0305215X.2018.1444163

    Article  MathSciNet  Google Scholar 

  35. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983). https://doi.org/10.1016/0305-0483(83)90088-9

    Article  Google Scholar 

  36. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_20

    Chapter  Google Scholar 

  37. Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total time–a quick method of obtaining a near optimum. J. Oper. Res. Soc. 16(1), 101–107 (1965). https://doi.org/10.1057/jors.1965.8

    Article  Google Scholar 

  38. Pan, Q.K., Wang, L., Zhao, B.H.: An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion. Int. J. Adv. Manuf. Technol. 38(7), 778–786 (2008). https://doi.org/10.1007/s00170-007-1120-y

    Article  Google Scholar 

  39. Pavelski, L.M., Delgado, M.R., Kessaci, M.É.: Meta-learning on flowshop using fitness landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019, pp. 925–933. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3321707.3321846

  40. Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total flowtime. Int. J. Prod. Econ. 29(1), 65–73 (1993). https://doi.org/10.1016/0925-5273(93)90024-F

    Article  Google Scholar 

  41. Reeves, C.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999). https://doi.org/10.1023/A:1018983524911

    Article  MathSciNet  MATH  Google Scholar 

  42. Ribas, I., Companys, R., Tort-Martorell, X.: Comparing three-step heuristics for the permutation flow shop problem. Comput. Oper. Res. 37(12), 2062–2070 (2010). https://doi.org/10.1016/j.cor.2010.02.006

    Article  Google Scholar 

  43. Rice, J.R.: The algorithm selection problem. In: Rubinoff, M., Yovits, M.C. (eds.) Advances in Computers, Advances in Computers, vol. 15, pp. 65–118. Elsevier, Washington, DC, USA (1976). https://doi.org/10.1016/S0065-2458(08)60520-3, iSSN: 0065-2458

  44. Rodriguez, J.A.V., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform machines. In: Baptiste, P., Kendall, G., Munier-Kordon, A., Sourd, F. (eds.) In proceedings of the 3rd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2007), pp. 506–513. Paris, France (2007), issue: 0

    Google Scholar 

  45. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005). https://doi.org/10.1016/j.ejor.2004.04.017

    Article  MATH  Google Scholar 

  46. Stinson, J.P., Smith, A.W.: A heuristic proǵramminǵ procedure for sequencinǵ the static flowshop. Int. J. Prod. Res. 20(6), 753–764 (1982). https://doi.org/10.1080/00207548208947802

    Article  Google Scholar 

  47. Taillard, É.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47(1), 65–74 (1990). https://doi.org/10.1016/0377-2217(90)90090-X

    Article  MathSciNet  MATH  Google Scholar 

  48. Taillard, É.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M

    Article  MathSciNet  MATH  Google Scholar 

  49. Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop scheduling problems minimising makespan. Eur. J. Oper. Res. 240(3), 666–677 (2015). https://doi.org/10.1016/j.ejor.2014.07.033

    Article  MATH  Google Scholar 

  50. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)

    Article  Google Scholar 

  51. Watson, J.P., Barbulescu, L., Howe, A.E., Whitley, L.D.: Algorithm performance and problem structure for flow-shop scheduling. In: AAAI/IAAI, pp. 688–695. American Association for Artificial Intelligence, Menlo Park, CA, USA (1999)

    Google Scholar 

  52. Yahyaoui, H., Krichen, S., Derbel, B., Talbi, E.G.: A hybrid ILS-VND based hyper-heuristic for permutation flowshop scheduling problem. Procedia Comput. Sci. 60, 632–641 (2015). https://doi.org/10.1016/j.procs.2015.08.199

    Article  Google Scholar 

Download references

Acknowledgments

M. Delgado acknowledges CNPq (a Brazilian research-funding agency) for her partial financial support, grants 309935/2017-2 and 439226/2018-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Marcondes Pavelski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavelski, L.M., Kessaci, MÉ., Delgado, M. (2021). Flowshop NEH-Based Heuristic Recommendation. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics