Skip to main content

Deep Convolutional Neural Network Based on Wavelet Transform for Super Image Resolution

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1375))

Included in the following conference series:

Abstract

Recently, the biggest change in machine learning has demonstrated its ability to solve super resolution (SR) problems. Deep learning (DL) has been successfully applied to solve such problems. One of the most commonly used categories of SR is single image super resolution (SISR) which aims to reconstruct a high-resolution (HR) image from its low resolution (LR) image. This paper presents a deep neural network DNN based on convolutional Wavelet Transform for SISR. The DWT is applied to the LR image to divide it into various frequency components. Then, our deep convolutional neural network (DCNN) is fed with only the approximated image while dismissing their details in order to remove noise. To validate the effectiveness of the proposed method, extensive experiments are performed using Set5, Set14, and urban 100 datasets. The obtained results demonstrated the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  2. Mallat, S.: Wavelets for a vision. Proc. IEEE 84(4), 604–614 (1996)

    Article  Google Scholar 

  3. Lu, X., Zheng, X., Yuan, Y.: Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens. 55, 5148–5157 (2017)

    Article  Google Scholar 

  4. Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18, 1016–1022 (1979)

    Article  Google Scholar 

  5. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Asian Conference on Computer Vision (2014)

    Google Scholar 

  6. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  7. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3799 (2015)

    Google Scholar 

  8. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  9. Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: Computer Vision and Pattern Recognition. CVPR 2008. IEEE Conference (2008)

    Google Scholar 

  10. Yan, Q., Xu, Y., Yang, X., Nguyen, T.Q.: Single image super resolution based on gradient profile sharpness. IEEE Trans. Image Process. 24, 3187–3202 (2015)

    Article  MathSciNet  Google Scholar 

  11. Timofte, R., De Smet, V., Van Gool,L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Proceedings of IEEE Asian Conference Computer Vision (2014)

    Google Scholar 

  12. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of IEEE International Conference Computer Vision (2013)

    Google Scholar 

  13. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  14. Song, H.A., Lee, S.-Y.: Hierarchical representation using NMF. In: International Conference on Neural Information Processing, pp. 466–473. Springer (2013)

    Google Scholar 

  15. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)

    Article  Google Scholar 

  16. Rochester, N., Holland, J., Haibt, L., Duda, W.: Tests on a cell assembly theory of the action of the brain, using a large digital computer. IRE Trans. Inf. Theory 2(3), 80–93 (1956)

    Article  Google Scholar 

  17. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Article  Google Scholar 

  18. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Back propagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  19. Elman, J.L.: Finding structure in time. Cognitive Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  20. Hinton, G.E.: Learning multiple layers of representation. Trends Cognitive Sci. 11(10), 428–434 (2007)

    Article  Google Scholar 

  21. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Proceedings of European Conference Computer Vision, Cham, Switzerland (2014)

    Google Scholar 

  22. Ma, W., Pan, Z., Guo, J., Lei, B.: Achieving super-resolution remote sensing images via the wavelet transform combined with the recursive Res-Net. IEEE Trans. Geosci. Remote Sens. 57(6), 3512–3527 (2019)

    Article  Google Scholar 

  23. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016, pp. 1874–1883 (2016)

    Google Scholar 

  24. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Proceedings of European Conference Computer Vision, Cham, Switzerland, pp. 391–407 (2016)

    Google Scholar 

  25. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016, pp. 1637–1645 (2016)

    Google Scholar 

  26. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), Honolulu, HI, USA, July 2017, pp. 2790–2798 (2017)

    Google Scholar 

  27. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.P., Tejani, A., Totz, J., Wang, Z., et al.: Photorealistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  28. Zhang, Q., Wang, H., Du, T., Yang, S., Wang, Y., Xing, Z., Bai, W., Yi, Y.: Super-resolution reconstruction algorithms based on fusion of deep learning mechanism and wavelet. In: AIPR 2019, August 2019, pp. 102–107 (2019)

    Google Scholar 

  29. ElAdel, A., Zaied, M., Amar, C.B.: Fast beta wavelet network-based feature extraction for image copy detection. Neurocomputing J. 173, 306–316 (2016)

    Article  Google Scholar 

  30. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  31. Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.L.A.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 1–10 (2012)

    Google Scholar 

  32. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Proceedings of 7th International Conference Curves Surfaces, pp. 711–730 (2012)

    Google Scholar 

  33. Huang, J.-B., Singh, A., Ahuja, N.: Single image super-resolution using transformed self-exemplars. In: CVPR, pp. 2, 6–8 (2015)

    Google Scholar 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(11), 600–612 (2004)

    Article  Google Scholar 

  35. Yang, C.Y., Ma, C., Yang, M.H.: Single-image super-resolution: a benchmark. In: Proceedings of European Conference on Computer Vision, pp. 372–386 (2014)

    Google Scholar 

  36. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaibi, N., Eladel, A., Zaied, M. (2021). Deep Convolutional Neural Network Based on Wavelet Transform for Super Image Resolution. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_12

Download citation

Publish with us

Policies and ethics