Skip to main content

ANFIS-Based Inverse Kinematics and Forward Dynamics of 3 DOF Serial Manipulator

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1375))

Included in the following conference series:

Abstract

Study of a serial manipulator involves many non-linear functions and complex sets of equations. The complexity of the problem increases as mobility of the system increases and it becomes a very tedious task to analyse the robotic system especially the inverse kinematics and forward dynamics. This study is aimed to reduce the complexity of analysis by implementing adaptive neuro-fuzzy inference system-based inverse kinematic analysis and forward dynamic analysis. The CAD model of serial manipulators is prepared using SOLIDWORKS to get geometrical and inertial information. The manipulator is also mathematically modelled in MATLAB and its forward kinematics (FK), inverse kinematics (IK), and dynamic analyses are carried out. The ANFIS networks are trained using data generated by a mathematical model, and it is then tested for a new set of data. Finally, the results are validated by comparing with that of the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, S.A.A., Ji-Pin, Z., Yi-Hua, Z.: Modeling and simulation of 5DOF robot manipulator and trajectory using MATLAB and CATIA. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 36–40. IEEE (2017)

    Google Scholar 

  2. Alavandar, S., Nigam, M.: Inverse kinematics solution of 3DOF planar robot using ANFIS. Int. J. Comput. Commun. Control 3, 150–155 (2008)

    Article  Google Scholar 

  3. Ankarali, A., Cilli, M.: ANFIS inverse kinematics and hybrid control of a human leg gait model. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 1, 34–49 (2013)

    Google Scholar 

  4. Arakelian, V., Le Baron, J.P., Mottu, P.: Torque minimisation of the 2-DOF serial manipulators based on minimum energy consideration and optimum mass redistribution. Mechatronics 21, 310–314 (2011)

    Article  Google Scholar 

  5. Borboni, A.: Solution of the inverse kinematic problem of a serial manipulator by a fuzzy algorithm. In: 10th IEEE International Conference on Fuzzy Systems (Cat. No. 01CH37297), vol. 1, pp. 336–339. IEEE (2001)

    Google Scholar 

  6. Cheraghpour, F., Vaezi, M., Jazeh, H.E.S., Moosavian, S.A.A.: Dynamic modeling and kinematic simulation of Stäubli TX40 robot using MATLAB/ADAMS co-simulation. In: 2011 IEEE International Conference on Mechatronics, pp. 386–391. IEEE (2011)

    Google Scholar 

  7. Duka, A.V.: ANFIS based solution to the inverse kinematics of a 3DOF planar manipulator. Proc. Technol. 19, 526–533 (2015)

    Article  Google Scholar 

  8. Fang, Y., Tsai, L.W.: Inverse velocity and singularity analysis of low-DOF serial manipulators. J. Robot. Syst. 20, 177–188 (2003)

    Article  Google Scholar 

  9. Frankovskỳ, P., Hroncová, D., Delyová, I., Hudák, P.: Inverse and forward dynamic analysis of two link manipulator. Proc. Eng. 48, 158–163 (2012)

    Article  Google Scholar 

  10. Hasan, A.T., Ismail, N., Hamouda, A.M.S., Aris, I., Marhaban, M.H., Al-Assadi, H.: Artificial neural network-based kinematics Jacobian solution for serial manipulator passing through singular configurations. Adv. Eng. Softw. 41, 359–367 (2010)

    Article  Google Scholar 

  11. Hayawi, M.J.: Analytical inverse kinematics algorithm of a 5-DOF robot arm. J. Educ. Pure Sci. 1, 92–104 (2011)

    Google Scholar 

  12. Hussain, S.B., Kanwal, F., et al.: Design of a 3 DOF robotic arm. In: 2016 Sixth International Conference on Innovative Computing Technology (INTECH), pp. 145–149. IEEE (2016)

    Google Scholar 

  13. Iliukhin, V., Mitkovskii, K., Bizyanova, D., Akopyan, A.: The modeling of inverse kinematics for 5 DOF manipulator. Proc. Eng. 176, 498–505 (2017)

    Article  Google Scholar 

  14. JhA, P.: Inverse kinematic analysis of robot manipulators. Ph.D. thesis (2015)

    Google Scholar 

  15. Kohli, D., Osvatic, M.: Inverse kinematics of general 6R and 5R, P serial manipulators (1993)

    Google Scholar 

  16. Kvrgic, V., Vidakovic, J.: Efficient method for robot forward dynamics computation. Mech. Mach. Theory 145, 103680 (2020)

    Article  Google Scholar 

  17. Lee, D., Lee, W., Park, J., Chung, W.K.: Task space control of articulated robot near kinematic singularity: forward dynamics approach. IEEE Robot. Autom. Lett. 5, 752–759 (2020)

    Article  Google Scholar 

  18. Momani, S., Abo-Hammour, Z.S., Alsmadi, O.M.: Solution of inverse kinematics problem using genetic algorithms. Appl. Math. Inf. Sci. 10, 225 (2016)

    Article  Google Scholar 

  19. Parker, J.K., Khoogar, A.R., Goldberg, D.E.: Inverse kinematics of redundant robots using genetic algorithms. In: 1989 IEEE International Conference on Robotics and Automation, pp. 271–272. IEEE Computer Society (1989)

    Google Scholar 

  20. Parthasarathy, T., Srinivasaragavan, V., Santhanakrishnan, S.: ADAMS-MATLAB co-simulation of a serial manipulator. In: MATEC Web of Conferences, vol. 95, p. 08002. EDP Sciences (2017)

    Google Scholar 

  21. Pratihar, D.K.: Soft Computing: Fundamentals and Applications. Alpha Science International, Ltd., Oxford (2013)

    Google Scholar 

  22. Pratihar, D.K.: Fundamentals of Robotics. Narosa Publishing House Pvt. Ltd., New Delhi (2017)

    Google Scholar 

  23. Qiao, S., Liao, Q., Wei, S., Su, H.J.: Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions. Mech. Mach. Theory 45, 193–199 (2010)

    Article  Google Scholar 

  24. Rain, T., Dovgal, V.M., Soe, Y.N.: Efficient method for inverse dynamics of robot manipulators by using adaptive-network-based fuzzy inference system. In: 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1–6. IEEE (2019)

    Google Scholar 

  25. Sun, J.D., Cao, G.Z., Li, W.B., Liang, Y.X., Huang, S.D.: Analytical inverse kinematic solution using the DH method for a 6-DOF robot. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 714–716. IEEE (2017)

    Google Scholar 

  26. Tchon, K.: Optimal extended Jacobian inverse kinematics algorithms for robotic manipulators. IEEE Trans. Robot. 24, 1440–1445 (2008)

    Article  Google Scholar 

  27. Zarkandi, S.: Inverse and forward dynamics of a 4 R SS+ PS parallel manipulator with one infinite rotational motion. Aust. J. Mech. Eng. 1–19 (2020)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the Ministry of Electronics and Information Technology, Government of India, for carrying out this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deshmukh, D., Pratihar, D.K., Deb, A.K., Ray, H., Ghosh, A. (2021). ANFIS-Based Inverse Kinematics and Forward Dynamics of 3 DOF Serial Manipulator. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_15

Download citation

Publish with us

Policies and ethics