Abstract
In this paper we study the application of metaheuristics in optimization of fuzzy logic controllers, mainly with the multi-verse optimizer and the comparison with other algorithms like PSO. For the main application of the study, we use a common control problem which is the temperature control in a shower, where its control objective is to achieve and maintain a desired temperature and flow, this by controlling the opening and closing speed of the cold and hot water valves. The fuzzy system that controls this problem uses two inputs and two outputs, where the optimization occurs over the antecedent and consequent membership functions, this by only changing the parameters of the main points in every membership function. The objective of this study is to observe the behavior of the multi-verse optimizer over control systems and its promising uses on more complex fuzzy control systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wescott, T.: Applied control theory for embedded systems. Newnes (2006)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. (1997)
Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2016). https://doi.org/10.1007/s00521-015-1870-7
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007
Teodorović, D.: Bee colony optimization (BCO). Stud. Comput. Intell. 248, 39–60 (2009). https://doi.org/10.1007/978-3-642-04225-6_3
Engelbrecht, A.P.: Computational Intelligence: An Introduction. John Wiley & Sons, Hoboken (2007)
Amézquita, L., Castillo, O., Soria, J., Cortes-Antonio, P.: A novel study of the multi-verse optimizer and its applications on multiple areas of computer science. In: Studies in Computational Intelligence, pp. 133–144. Springer Science and Business Media Deutschland GmbH (2021). https://doi.org/10.1007/978-3-030-58728-4_7
Zadeh, L.A.: Fuzzy algorithms. Inf. Control 12, 94–102 (1968). https://doi.org/10.1016/S0019-9958(68)90211-8
Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3, 1, 28–44 (1973). https://doi.org/10.1109/TSMC.1973.5408575
Izadbakhsh, A.: FAT-based robust adaptive control of electrically driven robots without velocity measurements. Nonlinear Dyn. 89, 289–304 (2017). https://doi.org/10.1007/s11071-017-3454-9
Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier Inc. (2014). https://doi.org/10.1016/C2013-0-01368-0
Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, CEC 2007, pp. 4661–4667 (2007). https://doi.org/10.1109/CEC.2007.4425083
Valdez, F., Melin, P., Castillo, O.: Fuzzy control of parameters to dynamically adapt the PSO and GA Algorithms. In: 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 (2010). https://doi.org/10.1109/FUZZY.2010.5583934
Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13, 2592–2612 (2013). https://doi.org/10.1016/J.ASOC.2012.11.026
Peraza, C., Valdez, F., Castillo, O.: Harmony search with dynamic adaptation of parameters for the optimization of a benchmark controller. In: Castillo, O., Melin, P., and Kacprzyk, J. (eds.) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications, pp. 157–168. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-35445-9_14
Bernal, E., Castillo, O., Soria, J., Valdez, F.: Parameter Adaptation in the imperialist competitive algorithm using generalized type-2 fuzzy logic. In: Castillo, O., Melin, P., and Kacprzyk, J. (eds.) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications, pp. 3–10. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-35445-9_1
Amador-Angulo, L., Castillo, O.: A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft. Comput. 22, 571–594 (2018). https://doi.org/10.1007/s00500-016-2354-0
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation. 76, 60–68 (2001). https://doi.org/10.1177/003754970107600201
Aguirre, A., Tegmark, M.: Multiple universes, cosmic coincidences, and other dark matters. J. Cosmol. Astropart. Phys. 2005, 35–50 (2005). https://doi.org/10.1088/1475-7516/2005/01/003
Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). https://doi.org/10.1007/BF02345020
Goering, R.: Matlab edges closer to electronic design automation world. Electron. Eng. Times. 4–5 (2004)
Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-70851-5
Olivas, F., Valdez, F., Castillo, O.: Comparison of bio-inspired methods with parameter adaptation through interval type-2 fuzzy logic. In: Studies in Computational Intelligence, pp. 39–53. Springer Verlag (2018). https://doi.org/10.1007/978-3-319-71008-2_4
Valdez, F., Vazquez, J.C., Gaxiola, F.: Fuzzy dynamic parameter adaptation in ACO and PSO for designing fuzzy controllers: the cases of water level and temperature control. Adv. Fuzzy Syst. (2018). https://doi.org/10.1155/2018/1274969
Ontiveros, E., Melin, P., Castillo, O.: High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018)
Melin, P., Sanchez, D.: Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. 460–461, 594–610 (2018)
Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)
Castillo, O., Castro, J.R., Melin, P., Rodriguez Dias, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft. Comput. 18(6), 1213–1224 (2014)
Castillo, O., Melin, P., A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1998), vol. 2, pp. 1182–1187 (1998)
Castillo, O., Melin, P.: Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput. 3(4), 363–378 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Amézquita, L., Castillo, O., Soria, J., Cortes-Antonio, P. (2021). Optimal Design of Fuzzy Controllers Using the Multiverse Optimizer. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-73050-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73049-9
Online ISBN: 978-3-030-73050-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)