Skip to main content

Stochastic Fractal Dynamic Search for the Optimization of CEC’2017 Benchmark Functions

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2020)

Abstract

This article develops an approach for dynamic parameter adaptation in the Stochastic Fractal Search (SFS) method, this by adding a fuzzy inference system for the dynamic adjustment of the diffusion parameter, thus generating the Stochastic Fractal Dynamic Search (SFDS) method. The SFDS implementation was carried out and tested with the optimization of CEC’ 2017 benchmark functions comparing its results with other optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salimi, H.: Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based Syst. 75, 1–8 (2015)

    Article  Google Scholar 

  2. Khalilpourazari, S., Naderi, B., Khalilpourazary, S.: Multi-objective stochastic fractal search: a powerful algorithm for solving complex multi-objective optimization problems. Soft Comput. 24(4), 3037–3066 (2020)

    Article  Google Scholar 

  3. Çelik, E.: Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Comput. Appl. 30(6), 1991–2002 (2018)

    Article  Google Scholar 

  4. Khalilpourazari, S., Khalilpourazary, S.: A Robust Stochastic Fractal Search approach for optimization of the surface grinding process. Swarm Evol. Comput. 38, 173–186 (2018)

    Article  Google Scholar 

  5. Mellal, M.A., Zio, E.: A penalty guided stochastic fractal search approach for system reliability optimization. Reliab. Eng. Syst. Saf. 152, 213–227 (2016)

    Article  Google Scholar 

  6. Brest, J., Maučec, M.: B. B.-2017 I. congress on, and undefined 2017, “Single objective real-parameter optimization: Algorithm jSO. ieeexplore.ieee.org Accessed 30 Oct 2020

    Google Scholar 

  7. Kumar, A., Misra, R., Singh, D., Misra, R.K., Singh, D.: Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase Butterfly Optimizer View project Load frequency control for unbalanced situations View project Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat phase, ieeexplore.ieee.org (2017)

    Google Scholar 

  8. Biedrzycki, R.: A Version of IPOP-CMA-ES Algorithm with Midpoint for CEC 2017 Single Objective Bound Constrained Problems, ieeexplore.ieee.org

    Google Scholar 

  9. Zadeh, L.A.: Fuzzy logic. Comput. (Long. Beach. Calif). 21(4), 83–93 (1988)

    Google Scholar 

  10. Zadeh, L.A.: On Fuzzy Algorithms, pp. 127–147 (1996)

    Google Scholar 

  11. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. (Ny) 9(1), 43–80 (1975)

    Article  MathSciNet  Google Scholar 

  12. Lagunes, M.L., Castillo, O., Soria, J.: Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm BT - fuzzy logic in intelligent system design, pp. 131–137. Springer (2018)

    Google Scholar 

  13. Lagunes, M.L., Castillo, O., Soria, J., Garcia, M., Valdez, F.: Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm. Granul. Comput., 11, July 2018

    Google Scholar 

  14. Lagunes, M.L., Castillo, O., Valdez, F., Soria, J.: Multi-metaheuristic competitive model for optimization of fuzzy controllers. Algorithms 12(5), 90 (2019)

    Article  MathSciNet  Google Scholar 

  15. Bernal, E., Castillo, O., Soria, J.: Imperialist Competitive Algorithm with Dynamic Parameter Adaptation Applied to the Optimization of Mathematical Functions, pp. 329–341 (2017)

    Google Scholar 

  16. Aydilek, İB., Aydilek, I.B.: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems you can find source codes of algorithm here: a hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. 66, 232–249 (2018)

    Article  Google Scholar 

  17. Ontiveros, E., Melin, P., Castillo, O.: High order α-planes integration: a new approach to computational cost reduction of General Type-2 Fuzzy Systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018)

    Article  Google Scholar 

  18. Melin, P., Sanchez, D.: Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. 460–461, 594–610 (2018)

    Article  MathSciNet  Google Scholar 

  19. Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput. 20(3), 1057–1070 (2016)

    Article  Google Scholar 

  20. Castillo, O., Castro, J.R., Melin, P., Rodriguez Dias, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput. 18(6), 1213–1224 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marylu L. Lagunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lagunes, M.L., Castillo, O., Valdez, F., Soria, J. (2021). Stochastic Fractal Dynamic Search for the Optimization of CEC’2017 Benchmark Functions. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_35

Download citation

Publish with us

Policies and ethics