Abstract
This article develops an approach for dynamic parameter adaptation in the Stochastic Fractal Search (SFS) method, this by adding a fuzzy inference system for the dynamic adjustment of the diffusion parameter, thus generating the Stochastic Fractal Dynamic Search (SFDS) method. The SFDS implementation was carried out and tested with the optimization of CEC’ 2017 benchmark functions comparing its results with other optimization algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Salimi, H.: Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based Syst. 75, 1–8 (2015)
Khalilpourazari, S., Naderi, B., Khalilpourazary, S.: Multi-objective stochastic fractal search: a powerful algorithm for solving complex multi-objective optimization problems. Soft Comput. 24(4), 3037–3066 (2020)
Çelik, E.: Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Comput. Appl. 30(6), 1991–2002 (2018)
Khalilpourazari, S., Khalilpourazary, S.: A Robust Stochastic Fractal Search approach for optimization of the surface grinding process. Swarm Evol. Comput. 38, 173–186 (2018)
Mellal, M.A., Zio, E.: A penalty guided stochastic fractal search approach for system reliability optimization. Reliab. Eng. Syst. Saf. 152, 213–227 (2016)
Brest, J., Maučec, M.: B. B.-2017 I. congress on, and undefined 2017, “Single objective real-parameter optimization: Algorithm jSO. ieeexplore.ieee.org Accessed 30 Oct 2020
Kumar, A., Misra, R., Singh, D., Misra, R.K., Singh, D.: Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase Butterfly Optimizer View project Load frequency control for unbalanced situations View project Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat phase, ieeexplore.ieee.org (2017)
Biedrzycki, R.: A Version of IPOP-CMA-ES Algorithm with Midpoint for CEC 2017 Single Objective Bound Constrained Problems, ieeexplore.ieee.org
Zadeh, L.A.: Fuzzy logic. Comput. (Long. Beach. Calif). 21(4), 83–93 (1988)
Zadeh, L.A.: On Fuzzy Algorithms, pp. 127–147 (1996)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. (Ny) 9(1), 43–80 (1975)
Lagunes, M.L., Castillo, O., Soria, J.: Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm BT - fuzzy logic in intelligent system design, pp. 131–137. Springer (2018)
Lagunes, M.L., Castillo, O., Soria, J., Garcia, M., Valdez, F.: Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm. Granul. Comput., 11, July 2018
Lagunes, M.L., Castillo, O., Valdez, F., Soria, J.: Multi-metaheuristic competitive model for optimization of fuzzy controllers. Algorithms 12(5), 90 (2019)
Bernal, E., Castillo, O., Soria, J.: Imperialist Competitive Algorithm with Dynamic Parameter Adaptation Applied to the Optimization of Mathematical Functions, pp. 329–341 (2017)
Aydilek, İB., Aydilek, I.B.: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems you can find source codes of algorithm here: a hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. 66, 232–249 (2018)
Ontiveros, E., Melin, P., Castillo, O.: High order α-planes integration: a new approach to computational cost reduction of General Type-2 Fuzzy Systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018)
Melin, P., Sanchez, D.: Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. 460–461, 594–610 (2018)
Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput. 20(3), 1057–1070 (2016)
Castillo, O., Castro, J.R., Melin, P., Rodriguez Dias, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput. 18(6), 1213–1224 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lagunes, M.L., Castillo, O., Valdez, F., Soria, J. (2021). Stochastic Fractal Dynamic Search for the Optimization of CEC’2017 Benchmark Functions. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-73050-5_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73049-9
Online ISBN: 978-3-030-73050-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)