Skip to main content

Hybrid Quantum-Classical Dynamic Programming Algorithm

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (JSAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1357))

Included in the following conference series:

  • 321 Accesses

Abstract

The Markov decision process has various applications in engineering, economics, operations research and artificial intelligence. Quantum computers provide a new way to tackle the computational problems in solving Markov decision process. We develop quantum circuits for dynamic programming algorithm to solve for the Markov decision process. The heuristic circuit construction method based on linear combinations of unitaries is demonstrated. The matrix decomposition and sampling are discussed. The computability advantage over classical Birkhoff-von Neumann method is proved. The connection to traditional dynamic programming algorithm is discussed in terms of functional equations. Our work suggests a new hybrid quantum-classical approach to dynamic programming algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, H., et al.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562110

  2. Bellman, R.E.: Dynamic Programming. Dover Publications Inc., New York (2003)

    MATH  Google Scholar 

  3. Chen, C.C., Shiau, S.Y., Wu, M.F., Wu, Y.R.: Hybrid classical-quantum linear solver using noisy intermediate-scale quantum machines. Sci. Rep. 9, 16251 (2019). https://doi.org/10.1038/s41598-019-52275-6

    Article  Google Scholar 

  4. Chen, S.Y.C., Huck Yang, C.H., Qi, J., Chen, P.Y., Ma, X., Goan, H.S.: Variational quantum circuits for deep reinforcement learning. arXiv e-prints arXiv:1907.00397 (2019)

  5. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. Quantum Info. Comput. 12(11–12), 901–924 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Denardo, E.V.: Dynamic Programming: Models and Applications. Prentice Hall PTR, Hoboken (1981)

    MATH  Google Scholar 

  7. Dufossé, F., Uçar, B.: Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices. Linear Algebra Appl. 497, 108–115 (2016). https://doi.org/10.1016/j.laa.2016.02.023. http://www.sciencedirect.com/science/article/pii/S0024379516001257

  8. Geramifard, A., Walsh, T.J., Tellex, S., Chowdhary, G., Roy, N., How, J.P.: A tutorial on linear function approximators for dynamic programming and reinforcement learning. Found. Trends Mach. Learn. 6(4), 375–451 (2013). https://doi.org/10.1561/2200000042

    Article  MATH  Google Scholar 

  9. Hamagami, T., Shibuya, T., Shimada, S.: Complex-valued reinforcement learning. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4175–4179 (2006). https://doi.org/10.1109/ICSMC.2006.384789

  10. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  11. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006). https://doi.org/10.1109/TCAD.2005.855930

    Article  Google Scholar 

  12. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003). https://doi.org/10.1109/TCAD.2003.811448

    Article  Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Naoki Yamamoto for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Chieh Chen or Tomah Sogabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, CC., Shiba, K., Sogabe, M., Sakamoto, K., Sogabe, T. (2021). Hybrid Quantum-Classical Dynamic Programming Algorithm. In: Yada, K., et al. Advances in Artificial Intelligence. JSAI 2020. Advances in Intelligent Systems and Computing, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-73113-7_18

Download citation

Publish with us

Policies and ethics