Skip to main content

Strategy and Spatial Representations for Improving Navigation Ability Without Vision Using Sensory Substitution Devices

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (JSAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1357))

Included in the following conference series:

Abstract

Accurate and quick navigation poses a major challenge for the visually impaired and those who have been hit by power outages, smoke and fog. SSDs are expected as a technical approach to this problem. The improvement of navigation by SSD and the knowledge of neuroscience and cognitive psychology are not so linked. In this study, we examine sensory information and strategies related to improving navigation by reviewing existing SSDs from the perspective of neuroscience and using the triangle completion task that has been used for a long time in cognitive psychology. From reviewing SSDs, it was found that depth information, direction information, and object information provide the information necessary for constructing spatial representations instead of vision. We found out that a strategy of recalling triangles using Labeled graphs is effective in the long term for improving navigation. Directional information encourages the construction of labeled graphs, and feedback on the direction of the navigation goal makes it accurate via the acquisition of metaknowledge and improvement of subjective scale. Our research would make a great contribution to the development of SSDs for navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourne, R.R.A., Flaxman, S.R., Braithwaite, T., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Heal. 5(9), e888–e897 (2017)

    Article  Google Scholar 

  2. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically based artificial navigation systems: review and prospects. Prog. Neurobiol. 51(5), 483–544 (1997)

    Article  Google Scholar 

  3. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Rob. Auton. Syst. 30(1), 133–153 (2000)

    Article  Google Scholar 

  4. Eichenbaum, H.: The role of the hippocampus in navigation is memory. J. Neurophysiol. 117(4), 1785–1796 (2017)

    Article  Google Scholar 

  5. Wang, R.F.: Building a cognitive map by assembling multiple path integration systems. Psychon. Bull. Rev. 23(3), 692–702 (2015). https://doi.org/10.3758/s13423-015-0952-y

    Article  Google Scholar 

  6. Chrastil, E.R., Warren, W.H.: From cognitive maps to cognitive graphs. PLoS ONE 9(11), e112544–e112544 (2014)

    Article  Google Scholar 

  7. Ekstrom, A.D., Huffman, D.J., Starrett, M.: Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. J. Neurophysiol. 118(6), 3328–3344 (2017)

    Article  Google Scholar 

  8. Loomis, J.M., Klatzky, R.L., Golledge, R.G., Philbeck, J.W.: Human navigation by path integration. Wayfinding Behav. Cogn. Mapp. Spatial Process. 125–151 (1999)

    Google Scholar 

  9. Segond, H., Weiss, D., Sampaio, E.: Human spatial navigation via a visuo-tactile sensory substitution system. Perception 34(10), 1231–1249 (2005)

    Article  Google Scholar 

  10. Stoll, C., Palluel-Germain, R., Fristot, V., Pellerin, D., Alleysson, D., Graff, C.: Navigating from a depth image converted into sound. Appl. Bionics Biomech. 2015, 1–9 (2015). https://doi.org/10.1155/2015/543492

    Article  Google Scholar 

  11. Chebat, D.R., Maidenbaum, S., Amedi, A.: Navigation using sensory substitution in real and virtual mazes. PLoS ONE 10(6), 1–18 (2015)

    Article  Google Scholar 

  12. Hoffmann, R., Spagnol, S., Kristjánsson, Á., Unnthorsson, R.: Evaluation of an audio-haptic sensory substitution device for enhancing spatial awareness for the visually impaired. Optom. Vis. Sci. 95(9), 757–765 (2018)

    Article  Google Scholar 

  13. Jicol, C., Lloyd-Esenkaya, T., Proulx, M.J., et al.: Efficiency of sensory substitution devices alone and in combination with self-motion for spatial navigation in sighted and visually impaired. Front. Psychol. 11, 1443 (2020)

    Article  Google Scholar 

  14. O’Keefe, J.: Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51(1), 78–109 (1976)

    Article  Google Scholar 

  15. Solstad, T., Boccara, C.N., Kropff, E., et al.: Representation of geometric borders in the entorhinal cortex. Science 322(5909), 1865–1868 (2008)

    Article  Google Scholar 

  16. Kärcher, S.M., Fenzlaff, S., Hartmann, D., et al.: Sensory augmentation for the blind. Front. Hum. Neurosci. 6(MARCH 2012), 1–15 (2012)

    Google Scholar 

  17. Kaspar, K., König, S., Schwandt, J., König, P.: The experience of new sensorimotor contingencies by sensory augmentation. Conscious Cogn. 28(1), 47–63 (2014)

    Article  Google Scholar 

  18. Schumann, F., O’Regan, J.K.: Sensory augmentation: integration of an auditory compass signal into human perception of space. Sci. Rep. 7(January) (2017)

    Google Scholar 

  19. Taube, J.S.: The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30(1), 181–207 (2007)

    Article  MathSciNet  Google Scholar 

  20. Massiceti, D., Hicks, S.L., van Rheede, J.J.: Stereosonic vision: exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm

    Google Scholar 

  21. Rolls, E.T.: Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9(4), 467–480 (1999)

    Article  Google Scholar 

  22. Rolls, E.T., Xiang, J.-Z.: Spatial view cells in the primate hippocampus and memory recall. Rev. Neurosci. 17(1–2), 175–200 (2006). https://doi.org/10.1515/REVNEURO.2006.17.1-2.175

    Article  Google Scholar 

  23. Fujita, N., Klatzky, R.L., Loomis, J.M., Golledge, R.G.: The encoding-error model of pathway completion without vision. Geogr. Anal. 25(4), 295–314 (1993)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank participants for cooperating with experiments. This research was supported by Grants-in-Aid for Scientific Research B (17H01946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouta Akimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akimoto, K., Fukawa, A., Yairi, I.E. (2021). Strategy and Spatial Representations for Improving Navigation Ability Without Vision Using Sensory Substitution Devices. In: Yada, K., et al. Advances in Artificial Intelligence. JSAI 2020. Advances in Intelligent Systems and Computing, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-73113-7_21

Download citation

Publish with us

Policies and ethics