Skip to main content

Learning Disentangled User Representation Based on Controllable VAE for Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12683))

Included in the following conference series:

Abstract

User behaviour on purchasing is always driven by complex latent factors, which are highly disentangled in the real world. Learning latent factorized representation of users can uncover user intentions behind the observed data (i.e. user-item interaction) and improve the robustness and interpretability of the recommender system. However, existing collaborative filtering methods learning disentangled representation face problems of balancing the trade-off between reconstruction quality and disentanglement. In this paper, we propose a controllable variational autoencoder framework for collaborative filtering. Specifically, we adopt a modified Proportional-Integral-Derivative (PID) control to the \(\beta \)-VAE objective to automatically tune the hyperparameter \(\beta \) using the output of Kullback-Leibler divergence as feedback. We further introduce item embeddings to guide the system to learn representation related to the real-world concepts using a factorized Gaussian distribution. Experimental results show that our model can get a crucial improvement over state-of-the-art baselines. We further evaluate our model’s effectiveness to control the trade-off between reconstruction error and disentanglement quality in the recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowman, S.R., Vilnis, L.: Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349 (2015)

  2. Burgess, C.P., Higgins, I.: Understanding disentangling in beta-VAE. arXiv preprint arXiv:1804.03599 (2018)

  3. Chen, T.Q., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentanglement in variational autoencoders. In: NeurIPS, pp. 2610–2620 (2018)

    Google Scholar 

  4. Dawen, L., Rahul, G.K., Matthew, D.H., Tony, J.: Variational autoencoders for collaborative filtering. In: WWW, pp. 689–698 (2018)

    Google Scholar 

  5. Francesco, L., Stefan, B., Mario, L., Sylvain, G., Bernhard, S., Olivier, B.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: PMLR, pp. 4114–4124 (2019)

    Google Scholar 

  6. Graham, C.G., Stefan, F.G., Mario, E.S.: Classical PID control. Control System Design, Prentice Hall PTR (2005)

    Google Scholar 

  7. Irina, H.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  8. Jianxin, M., Chang, Z., Peng, C., Hongxia, Y., Wenwu, Z.: Learning disentangled representations for recommendation. In: NeurIPS, pp. 5712–5723 (2019)

    Google Scholar 

  9. Jianmo, N., Jiacheng, L.: Justifying recommendations using distantly-labeled reviews and fined-grained aspects. In: EMNLP, pp. 188–197 (2019)

    Google Scholar 

  10. Julian, M., Christopher, T., Qinfeng, S., Anton, V.D.H.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43–52 (2015)

    Google Scholar 

  11. Kim, H., Mnih, A.: Disentangling by factorising. In: ICML, pp. 2654–2663 (2018)

    Google Scholar 

  12. Kumar, A., Sattigeri, P., Balakrishnan, A.: Variational inference of disentangled latent concepts from unlabeled observations. In: ICLR (2018)

    Google Scholar 

  13. Luo, A., Zhao, P., Liu, Y.: Collaborative self-attention network for session-based recommendation. In: IJCAI, pp. 2591–2597 (2020)

    Google Scholar 

  14. Petar, V.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  15. Ruslan, S., Andriy, M., Geoffrey, E.H.: Restricted Boltzmann machines for collaborative filtering. In: ICML, pp. 791–798 (2007)

    Google Scholar 

  16. Santosh, K., Xia, N., George, K.: FISM: factored item similarity models for top-N recommender systems. In: KDD, pp. 659–667. ACM (2013)

    Google Scholar 

  17. Shao, H., Yao, S., Sun, D., Zhang, A.: ControlVAE: controllable variational autoencoder. In: ICML, pp. 8655–8664 (2020)

    Google Scholar 

  18. Suvash, S., Aditya, K.M., Scott, S., Lexing, X.: AutoRec: autoencoders meet collaborative filtering. In: WWW, pp. 111–112 (2015)

    Google Scholar 

  19. Xi, C., Yan, D., Rein, H., John, S., Ilya, S., Pieter, A.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: NeurIPS, pp. 2172–2180 (2016)

    Google Scholar 

  20. Xiaopeng, L., James, S.: Collaborative variational autoencoder for recommender systems. In: SIGKDD, pp. 305–314 (2017)

    Google Scholar 

  21. Xiang, W., Hongye, J., An, Z., Xiangnan, H., Tat, S.C.: Disentangled graph collaborative filtering. In: SIGIR, pp. 1001–1010 (2020)

    Google Scholar 

  22. Xiangnan, H., Lizi, L., Hanwang, Z., Liqiang, N., Xia, H., Tat, S.C.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  23. Yao, W., Christopher, D., Alice, X.Z., Martin, E.: Collaborative denoising auto-encoders for top-N recommender systems. In: WSDM, pp. 153–162. ACM (2016)

    Google Scholar 

  24. Yehuda, K.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD, pp. 426–434. ACM (2018)

    Google Scholar 

  25. Yehuda, K., Robert, M.B., Chris, V.: Matrix factorization techniques for recommender systems. In: IEEE Computer, pp. 30–37 (2009)

    Google Scholar 

  26. Zhang, Y., Zhu, Z., He, Y.: Content-collaborative disentanglement representation learning for enhanced recommendation. In: RecSys, pp. 43–52. ACM (2020)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by NSFC (No. 61876117, 61876217, 61872258, 61728205), ESP of the State Key Laboratory of Software Development Environment, and PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengpeng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhao, P., Wang, D., Xian, X., Liu, Y., Sheng, V.S. (2021). Learning Disentangled User Representation Based on Controllable VAE for Recommendation. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021. Lecture Notes in Computer Science(), vol 12683. Springer, Cham. https://doi.org/10.1007/978-3-030-73200-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73200-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73199-1

  • Online ISBN: 978-3-030-73200-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics