Skip to main content

NRCP-Miner: Towards the Discovery of Non-redundant Co-location Patterns

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12683))

Included in the following conference series:

Abstract

Co-location pattern mining, which refers to discovering neighboring spatial features in geographic space, is an interesting and important task in spatial data mining. However, in practice, the usefulness of prevalent (interesting) co-location patterns generated by traditional frameworks is strongly limited by their huge amount, which may affect the user’s following decisions. To address this issue, in this demonstration, we present a novel schema, named NRCP-Miner, aiming at the redundancy reduction for prevalent co-location patterns, i.e., discovering non-redundant co-location patterns by utilizing the spatial distribution information of co-location instances. NRCP-Miner can effectively remove the redundant patterns contained in prevalent co-location patterns, thus furtherly assists the user to make the following decisions. We evaluated the efficiency of NRCP-Miner compared with related state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, Y., Shekhar, S., Xiong, H.: Discovering co-location patterns from spatial data sets: a general approach. IEEE Trans. Knowl. Data Eng 16(12), 1472–1485 (2004)

    Article  Google Scholar 

  2. Wang, L., Zhou, L., Lu, J., et al.: An order-clique-based approach for mining maximal co-locations. Inf. Sci. 179(2009), 3370–3382 (2009)

    Article  Google Scholar 

  3. Yoo, J.S., Bow, M.: Mining top-k closed co-location patterns. In: IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, pp. 100–105 (2011)

    Google Scholar 

  4. Wang, L., Bao, X., Zhou, L.: Redundancy reduction for prevalent co-location patterns. IEEE Trans. Knowl. Data Eng. 30(1), 142–155 (2018)

    Article  Google Scholar 

  5. Wang, L., Bao, X., Chen, H., Cao, L.: Effective lossless condensed representation and discovery of spatial co-location patterns. Inf. Sci. 436–437, 197–213 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bao, X., Wang, L.: A clique-based approach for co-location pattern mining. Inf. Sci. 490, 244–264 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants (No. 62006057, No. U1811264, No. U1711263, No. 61966009, No. 61762027) from the National Natural Science Foundation of China, in part by National Science Foundation of Guangxi Province (No. 2019GXNSFBA245059), in part by the Key Research and Development Program of Guangxi (No. AD19245011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, X., Lu, J., Gu, T., Chang, L., Wang, L. (2021). NRCP-Miner: Towards the Discovery of Non-redundant Co-location Patterns. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021. Lecture Notes in Computer Science(), vol 12683. Springer, Cham. https://doi.org/10.1007/978-3-030-73200-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73200-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73199-1

  • Online ISBN: 978-3-030-73200-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics