Skip to main content

Session Based Recommendations Using Recurrent Neural Networks - Long Short-Term Memory

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Abstract

This paper describes the use of long short-term memory (LSTM) for session-based recommendations. This paper aims to test and propose the best solution using word-level LSTM as a real-time recommendation service. Our method is for general use. Our model is composed of embedding, two LSTM layers and dense layer. We employ the mean of squared errors to assess the prediction results. Also, we tested our prediction of recall and precision metrics. The best performing network has been a trainer for the last year of likes on an image-based social platform and contained about 2000 classes. Our best model has resulted in recall value 0.0213 and precision value 0.0052 on twenty items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl 31(7), 2727–2740 (2019). https://doi.org/10.1007/s00521-017-3225-z, wOS:000478687000053

  2. Abdollahi, B., Nasraoui, O.: Explainable Restricted Boltzmann Machines for Collaborative Filtering (2016). arXiv:1606.07129 [cs, stat], http://arxiv.org/abs/1606.07129

  3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Montreal, U.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. 19, 153 (2007)

    Google Scholar 

  4. Cheng, H.T., et al.: Wide & Deep Learning for Recommender Systems(2016). arXiv:1606.07792 [cs, stat], http://arxiv.org/abs/1606.07792

  5. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649. IEEE, New York (2012) wOS:000309166203102

    Google Scholar 

  6. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2019). https://doi.org/10.1109/TKDE.2018.2849727, https://ieeexplore.ieee.org/document/8392745/

  7. Dobrovolny, M., Mls, K., Krejcar, O., Mambou, S., Selamat, A.: Medical image data upscaling with generative adversarial networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 739–749. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_66

    Chapter  Google Scholar 

  8. Dobrovolny, M., Soukal, I., Lim, K.C., Selamat, A., Krejcar, O.: Forecasting of FOREX price trend using recurrent neural network - long short-term memory, pp. 95–103 (2020). https://doi.org/10.36689/uhk/hed/2020-01-011, http://hdl.handle.net/20.500.12603/212

  9. Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 265–308. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_8

    Chapter  Google Scholar 

  10. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017). arXiv:1703.04247 [cs], http://arxiv.org/abs/1703.04247

  11. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2016). https://doi.org/10.1145/2827872, https://dl.acm.org/doi/10.1145/2827872

  12. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural Collaborative Filtering (2017). arXiv:1708.05031 [cs], http://arxiv.org/abs/1708.05031

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735, WOS:A1997YA04500007

  14. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991). https://doi.org/10.1002/aic.690370209, https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209, \_eprint: https://doi.org/10.1002/aic.690370209

  15. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 105–114. IEEE, New York (2017). wOS:000418371400012

    Google Scholar 

  16. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 811–820. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2806416.2806527

  17. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1754–1763 (2018). https://doi.org/10.1145/3219819.3220023, http://arxiv.org/abs/1803.05170, arXiv: 1803.05170

  18. Mambou, S., Krejcar, O., Selamat, A., Dobrovolny, M., Maresova, P., Kuca, K.: Novel thermal image classification based on techniques derived from mathematical morphology: case of breast cancer. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 683–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_61

    Chapter  Google Scholar 

  19. Pena-Barragan, J.M., Ngugi, M.K., Plant, R.E., Six, J.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115(6), 1301–1316 (2011). https://doi.org/10.1016/j.rse.2011.01.009, wOS:000290011200001

  20. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning - ICML 2007, pp. 791–798. ACM Press, Corvalis (2007). https://doi.org/10.1145/1273496.1273596, http://portal.acm.org/citation.cfm?doid=1273496.1273596

  21. Sun, Y., Chen, J., Liu, Q., Liu, G.: Learning image compressed sensing with sub-pixel convolutional generative adversarial network. Pattern Recognition 98, (2020). https://doi.org/10.1016/j.patcog.2019.107051, http://www.sciencedirect.com/science/article/pii/S003132031930353X

  22. Varsamopoulos, S., Bertels, K., Almudever, C.G.: Designing neural network based decoders for surface codes, p. 13 (2018)

    Google Scholar 

  23. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017). https://doi.org/10.1109/TMI.2017.2708987, wOS:000417913600013

  24. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018). https://doi.org/10.1109/TMI.2018.2827462, wOS:000434302700006

Download references

Acknowledgment

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrovolny, M., Selamat, A., Krejcar, O. (2021). Session Based Recommendations Using Recurrent Neural Networks - Long Short-Term Memory. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics