Skip to main content

Emotional Piano Melodies Generation Using Long Short-Term Memory

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Abstract

One of the tremendous topics in the music industry is an automatic music composition. In this study, we aim to build an architecture that shows how LSTM models compose music using the four emotional piano datasets. The architecture consists of four steps: data collection, data preprocessing, training the models with one and two hundred epochs, and evaluation by loss analysis. From the result of this work, the model trained for 200 epochs give the lowest loss error rate for the composing of emotional piano music. Finally, we generate four emotional melodies based on the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)

    Article  Google Scholar 

  2. Deselaers, T., Hasan, S., Bender, O., Ney, H.: A deep learning approach to machine transliteration. In: Proceedings of the Fourth Workshop on Statistical Machine Translation, pp. 233–241 (2009)

    Google Scholar 

  3. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018)

    Google Scholar 

  4. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  5. Choi, K., Fazekas, G., Cho, K., Sandler, M.: A tutorial on deep learning for music information retrieval. arXiv preprint arXiv:1709.04396 (2017)

  6. Han, Y., Kim, J., Lee, K.: Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Trans. Audio Speech Lang. Process. 25(1), 208–221 (2016)

    Article  Google Scholar 

  7. Rosner, A., Kostek, B.: Automatic music genre classification based on musical instrument track separation. J. Intell. Inf. Syst. 50(2), 363–384 (2017). https://doi.org/10.1007/s10844-017-0464-5

    Article  Google Scholar 

  8. Sigtia, S., Benetos, E., Dixon, S.: An end-to-end neural network for polyphonic piano music transcription. IEEE/ACM Trans. Audio Speech Lang. Process. 24(5), 927–939 (2016)

    Article  Google Scholar 

  9. Pham, V., Munkhbat, K., Ryu, K.: A classification of music genre using support vector machine with backward selection method. In: 8th International Conference on Information, System and Convergence Applications, Ho Chi Minh (2020)

    Google Scholar 

  10. Sturm, B.L., Santos, J.F., Ben-Tal, O., Korshunova, I.: Music transcription modelling and composition using deep learning. arXiv preprint arXiv:1604.08723 (2016)

  11. Munkhbat, K., Ryu, K.H.: Music generation using long short-term memory. In: International Conference on Information, System and Convergence Applications (ICISCA), pp. 43–44 (2019)

    Google Scholar 

  12. Cheng, Z., Shen, J.: On effective location-aware music recommendation. ACM Trans. Inf. Syst. (TOIS) 34(2), 1–32 (2016)

    Article  Google Scholar 

  13. Kratus, J.: Nurturing the songcatchers: philosophical issues in the teaching of music composition. In: Bowman, W., Frega, A. (eds.) The Oxford Handbook of Philosophy in Music Education. Oxford University Press, New York (2012)

    Google Scholar 

  14. Monteith, K., Martinez, T.R., Ventura, D.: Automatic generation of music for inducing emotive response. In: ICCC, pp. 140–149 (2010)

    Google Scholar 

  15. Rumelhart, D.H.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  16. Mozer, M.C.: Neural network music composition by prediction: exploring the benefits of psychoacoustic constraints and multi-scale processing. Connect. Sci. 6(2–3), 247–280 (1994)

    Article  Google Scholar 

  17. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, New York (2001)

    Google Scholar 

  18. Cooper, G.W., Cooper, G., Meyer, L.B.: The Rhythmic Structure of Music. The University of Chicago Press, Chicago (1960)

    Google Scholar 

  19. Eck, D., Schmidhuber, J.: A first look at music composition using LSTM recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale 103, 48 (2002)

    Google Scholar 

  20. Google Brain Magenta. https://magenta.tensorflow.org/. Accessed 06 May 2020

  21. Clara: A neural net music generator. http://christinemcleavey.com/clara-a-neural-net-music-generator/. Accessed 06 May 2020

  22. Mao, H.H.: DeepJ: style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018)

    Google Scholar 

  23. Tikhonov, A., Yamshchikov, I.P.: Music generation with variational recurrent autoencoder supported by history. arXiv preprint arXiv:1705.05458 (2017)

  24. Lin, J.C., Wei, W.L., Wang, H.M.: Automatic music video generation based on emotion-oriented pseudo song prediction and matching. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 372–376 (2016)

    Google Scholar 

  25. Madhok, R., Goel, S., Garg, S.: SentiMozart: music generation based on emotions. In: ICAART, vol. 2, pp. 501–506 (2018)

    Google Scholar 

  26. Eerola, T.: Music and emotion dataset (Primary Musical Cues) (2016)

    Google Scholar 

  27. Juslin, P.N.: Musical Emotions Explained: Unlocking the Secrets of Musical Affect. Oxford University Press, New York (2019)

    Book  Google Scholar 

  28. Eerola, T., Friberg, A., Bresin, R.: Emotional expression in music: contribution, linearity, and additivity of primary musical cues. Front. Psychol. 4, 487 (2013)

    Article  Google Scholar 

  29. Cuthbert, M.S., Ariza, C.: music21: A toolkit for computer-aided musicology and symbolic music data. In: Proceedings of the 11th International Society for Music Information Retrieval Conference, pp. 637–642 (2010)

    Google Scholar 

  30. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  31. Kamara, A.F., Chen, E., Liu, Q., Pan, Z.: Combining contextual neural networks for time series classification. Neurocomputing 384, 57–66 (2020). https://doi.org/10.1016/j.neucom.2019.10.113

    Article  Google Scholar 

  32. Huk, M.: Measuring the effectiveness of hidden context usage by machine learning methods under conditions of increased entropy of noise. In: 3rd IEEE International Conference on Cybernetics (CYBCONF 2017), Exeter, UK, pp. 1–6. IEEE Press (2017). https://doi.org/10.1109/CYBConf.2017.7985787

  33. Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36

    Chapter  Google Scholar 

  34. Maheswaranathan, N., Sussillo, D.: How recurrent networks implement contextual processing in sentiment analysis. arXiv preprint arXiv:2004.08013 (2020)

  35. Mousa, A., Schuller, B.: Contextual bidirectional long short-term memory recurrent neural network language models: a generative approach to sentiment analysis. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, Spain, pp. 1023–1032 (2017)

    Google Scholar 

  36. Rahman, M.A., Ahmed, F., Ali, N.: Contextual deep search using long short term memory recurrent neural network. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 39–42. IEEE (2019)

    Google Scholar 

  37. Svegliato, J., Witty, S.: Deep jammer: a music generation model. Small 6, 67 (2016)

    Google Scholar 

  38. Huang, A., Wu, R.: Deep learning for music. arXiv preprint arXiv:1606.04930 (2016)

  39. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 17(1), 26–40 (2019)

    Google Scholar 

  40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Book, M.S.: Generating retro video game music using deep learning techniques. Master’s thesis, University of Stavanger, Norway (2019)

    Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4010826), and (2019K2A9A2A06020672) and (No. 2020R1A2B5B02001717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Ho Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munkhbat, K., Jargalsaikhan, B., Amarbayasgalan, T., Theera-Umpon, N., Ryu, K.H. (2021). Emotional Piano Melodies Generation Using Long Short-Term Memory. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics