Skip to main content

Bone Age Assessment by Means of Intelligent Approaches

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12672))

Included in the following conference series:

  • 1756 Accesses

Abstract

There are many practical applications of intelligent and contextual approaches. The development of systems designed for medical diagnosis is an example of a real world problem employing such approaches. The appropriate understanding of context of digital medical data is crucial in this case. In the paper the automatic bone age assessment by means of digital RTG images of pediatric patients is analyzed. The particular stages of the approach are presented and the algorithms for each of them are proposed. The approach consists of the localization of a hand area, localization of characteristic points, localization of regions of interest, feature extraction and classification. The discussion on each of them is provided. Particular algorithms are proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huk, M.: Measuring the effectiveness of hidden context usage by machine learning methods under conditions of increased entropy of noise. In: 3rd IEEE International Conference on Cybernetics (CYBCONF 2017), Exeter, UK, pp. 1–6. IEEE press (2017)

    Google Scholar 

  2. Sitek, P., Pietranik, M., KrĂłtkiewicz, M., Srinilta, C. (eds.): ACIIDS 2020. CCIS, vol. 1178. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3380-8

    Book  Google Scholar 

  3. Huk, M., Kwiatkowski J., Konieczny D., Kędziora M., Mizera-Pietraszko J.: Context-sensitive text mining with fitness leveling genetic algorithm. In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 2015, pp. 1–6 (2015). ISBN: 978-1-4799-8321-6

    Google Scholar 

  4. Guan, H., Zhang, Y., Cheng, H.-D., Tang, X.: Bounded-abstaining classification for breast tumors in imbalanced ultrasound images. Int. J. Appl. Math. Comput. Sci. 2(30), 325–336 (2020)

    MathSciNet  Google Scholar 

  5. Franchini, S., Gentile, A., Vassallo, G., Vitabile, S.: Implementation and evaluation of medical imaging techniques based on conformal geometric algebra. Int. J. Appl. Math. Comput. Sci. 3(20), 415–433 (2020)

    Google Scholar 

  6. Gupta, A.K., Jana, M., Kumar, A.: Imaging in short stature and bone age estimation. Indian J. Pediatr. 86, 1–13 (2019)

    Google Scholar 

  7. Unger, S., Superti-Furga, A., Rimoin, D.L.: A diagnostic approach to skeletal dysplasias. In: Pediatric Bone, pp. 403–437. Academic Press, Cambridge (2012)

    Google Scholar 

  8. Kumar, S.: Tall stature in children: differential diagnosis and management. Int. J. Pediatr. Endocrinol. 2013(S1), P53 (2013)

    Article  Google Scholar 

  9. Martin, D.D., et al.: The use of bone age in clinical practice–part 2. Horm. Res. Paediatr. 76(1), 10–16 (2011)

    Article  Google Scholar 

  10. Ostojic, S.M.: Prediction of adult height by Tanner-Whitehouse method in young Caucasian male athletes. QJM Int. J. Med. 106(4), 341–345 (2013)

    Article  Google Scholar 

  11. Schmeling, A., Reisinger, W., Geserick, G., Olze, A.: Age estimation of unaccompanied minors: part I. General considerations. Forensic Sci. Int. 159, S61–S64 (2006)

    Article  Google Scholar 

  12. Malina, R.M.: Skeletal age and age verification in youth sport. Sports Med. 41(11), 925–947 (2011)

    Article  Google Scholar 

  13. Ontell, F.K., Ivanovic, M., Ablin, D.S., Barlow, T.W.: Bone age in children of diverse ethnicity. AJR Am. J. Roentgenol. 167(6), 1395–1398 (1996)

    Article  Google Scholar 

  14. Mentzel, H.J., et al.: Assessment of skeletal age at the wrist in children with a new ultrasound device. Pediatr. Radiol. 35(4), 429–433 (2005)

    Article  Google Scholar 

  15. Khan, K.M., Miller, B.S., Hoggard, E., Somani, A., Sarafoglou, K.: Application of ultrasound for bone age estimation in clinical practice. J. Pediatr. 154(2), 243–247 (2009)

    Article  Google Scholar 

  16. Utczas, K., Muzsnai, A., Cameron, N., Zsakai, A., Bodzsar, E.B.: A comparison of skeletal maturity assessed by radiological and ultrasonic methods. Am. J. Hum. Biol. 29(4), e22966 (2017)

    Article  Google Scholar 

  17. Torenek Ağırman, K., Bilge, O.M., Miloğlu, Ö.: Ultrasonography in determining pubertal growth and bone age. Dentomaxillofacial Radiol. 47(7), 20170398 (2018)

    Article  Google Scholar 

  18. Urschler, M., et al.: Applicability of Greulich-Pyle and Tanner-Whitehouse grading methods to MRI when assessing hand bone age in forensic age estimation: A pilot study. Forensic Sci. Int. 266, 281–288 (2016)

    Article  Google Scholar 

  19. Terada, Y., et al.: Skeletal age assessment in children using an open compact MRI system. Magn. Reson. Med. 69(6), 1697–1702 (2013)

    Article  Google Scholar 

  20. Pennock, A.T., Bomar, J.D.: Bone age assessment utilizing knee MRI. Orthopaedic J. Sports Med. 5(7_suppl6), 2325967117S0042 (2017)

    Article  Google Scholar 

  21. Satoh, M.: Bone age: assessment methods and clinical applications. Clin. Pediatr. Endocrinol. 24(4), 143–152 (2015)

    Article  Google Scholar 

  22. Mughal, A.M., Hassan, N., Ahmed, A.: Bone age assessment methods: a critical review. Pak. J. Med. Sci. 30(1), 211 (2014)

    Google Scholar 

  23. Gilsanz, V., Ratib, O.: Hand Bone Age: A Digital Atlas of Skeletal Maturity, 2nd ed. (2012)

    Google Scholar 

  24. Gaskin, C.M., Kahn, M.M.S.L., Bertozzi, J.C., Bunch, P.M.: Skeletal Development of the Hand and Wrist: A Radiographic Atlas and Digital Bone Age Companion. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  25. 10.2020 r. Bone Formation and Development. https://open.oregonstate.education/aandp/chapter/6-4-bone-formation-and-development/

  26. 10.2020 r. Hand and Wrist Anatomy. https://murdochorthopaedic.com.au/our-surgeons/paul-jarrett/patient-information-guides/hand-wrist-anatomy/

  27. 10.2020 r. Anatomic differences: child vs. Adult. https://www.rch.org.au/fracture-education/anatomy/Anatomic_differences_child_vs_adult/

  28. Sato, K., et al.: Setting up an automated system for evaluation of bone age. Endocr. J. 46(Suppl), S97–S100 (1999)

    Article  Google Scholar 

  29. Pietka, E., Gertych, A., Pospiech, S., Cao, F., Huang, H.K., Gilsanz, V.: Computer-assisted bone age assessment: Image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans. Med. Imaging 20(8), 715–729 (2001)

    Article  Google Scholar 

  30. Gertych, A., Zhang, A., Sayre, J., Pospiech-Kurkowska, S., Huang, H.K.: Bone age assessment of children using a digital hand atlas. Comput. Med. Imaging Graph. 31(4–5), 322–331 (2007)

    Article  Google Scholar 

  31. Bocchi, L., Ferrara, F., Nicoletti, I., Valli, G.: An artificial neural network architecture for skeletal age assessment. In: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), vol. 1, pp. I-1077. IEEE (2003

    Google Scholar 

  32. Kashif, M., Deserno, T.M., Haak, D., Jonas, S.: Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? a general question answered for bone age assessment. Comput. Biol. Med. 68, 67–75 (2016)

    Article  Google Scholar 

  33. Seok, J., Kasa-Vubu, J., DiPietro, M., Girard, A.: Expert system for automated bone age determination. Expert Syst. Appl. 50, 75–88 (2016)

    Article  Google Scholar 

  34. Liang, B., et al.: A deep automated skeletal bone age assessment model via region-based convolutional neural network. Futur. Gener. Comput. Syst. 98, 54–59 (2019)

    Article  Google Scholar 

  35. 10.2020. Automated bone age estimation. https://bonexpert.com/

  36. Thodberg, H.H., Kreiborg, S., Juul, A., Pedersen, K.D.: The BoneXpert method for automated determination of skeletal maturity. IEEE Trans. Med. Imaging 28(1), 52–66 (2008)

    Article  Google Scholar 

  37. Thodberg, H.H., Martin, D.D.: Validation of a new version of BoneXpert bone age in children with congenital adrenal hyperplasia (CAH), precocious puberty (PP), growth hormone deficiency (GHD), turner syndrome (TS), and other short stature diagnoses. In: 58th Annual ESPE, vol. 92. European Society for Paediatric Endocrinology (2019)

    Google Scholar 

  38. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  39. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  40. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  41. Yang, W., Cai, L., Wu, F.: Image segmentation based on gray level and local relative entropy two dimensional histogram. PLoS ONE 15(3), e0229651 (2020)

    Article  Google Scholar 

  42. Tadeusiewicz, R., Korohoda, P.: Computer image analysis and processing. Wydawnictwo Fundacji Postępu Telekomunikacji (1997). (in Polish)

    Google Scholar 

  43. 03.2020 r. Image Processing and Informatics Lab - Computer-aided Bone Age Assessment of Children Using a Digital Hand Atlas. https://ipilab.usc.edu/computer-aided-bone-age-assessment-of-children-using-a-digital-hand-atlas-2/

  44. Mestetskiy, L., Bakina, I., Kurakin, A.: Hand geometry analysis by continuous skeletons. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, pp. 130–139. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21596-4_14

    Chapter  Google Scholar 

  45. Su, L., et al.: Delineation of carpal bones from hand X-ray images through prior model, and integration of region-based and boundary-based segmentations. IEEE Access 6, 19993–20008 (2018)

    Article  Google Scholar 

  46. Tolga Birdal. Maximum Inscribed Circle using Distance Transform (https://www.mathworks.com/matlabcentral/fileexchange/30805-maximum-inscribed-circle-using-distance-transform), MATLAB Central File Exchange (2020). Accessed 9 Oct 2020

  47. Schafer, R.W.: What is a Savitzky-Golay filter?[Lecture notes]. IEEE Signal Process. Mag. 28(4), 111–117 (2011)

    Article  Google Scholar 

  48. Cunha, P., Moura, D.C., LĂłpez, M.A.G., Guerra, C., Pinto, D., Ramos, I.: Impact of ensemble learning in the assessment of skeletal maturity. J. Med. Syst. 38(9), 87 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Frejlichowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

GinaƂ, M., Frejlichowski, D. (2021). Bone Age Assessment by Means of Intelligent Approaches. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., TrawiƄski, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics