Skip to main content

Blind Source Separation for Wireless Networks: A Tool for Topology Sensing

(Invited Paper)

  • Conference paper
  • First Online:
Cognitive Radio-Oriented Wireless Networks (CrownCom 2020)

Abstract

In this work, a tool for topology sensing of a non-collaborative wireless network using power profiles captured by radio-frequency (RF) sensors is proposed. Assuming that the features of the network (i.e., the number of nodes, medium access control (MAC) and routing protocols) are unknown and that the sensors observe signal mixtures because of the wireless medium, blind source separation (BSS) is used to separate the traffic profiles. Successively, the topology of the network is inferred by detecting causal relationships between the separated streams. According to the numerical results, the proposed tool senses the topology with promising accuracy when operating in mild shadowing conditions, even with a relatively low number of radio-frequency (RF) sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The BSS requires a coarse estimate of the network nodes position, therefore it can be performed by the sensor network before the tasks summarized in Fig. 1 [14, 15].

  2. 2.

    Usually, the shadowing parameter is expressed as the standard deviation of the received power in deciBel, i.e., \({\sigma _\text {S}}(\text {dB})=\frac{10}{\ln {10}}\sigma _\text {S}\).

  3. 3.

    The noise term in the ED is a central chi-squared r.v. with a number of degrees of freedom, \(N_\text {DOF}\), proportional to the time-bandwidth product. When \(N_\text {DOF}\) is large, the noise term can be considered constant. As detailed in Sect. 5 we consider a system with bandwidth \(W=20\,\)MHz (i.e., WiFi channel) and an integration time \(T_\text {i}=10\,\upmu \)s, hence \(N_\text {DOF}=2WT_{\text {i}}=400\).

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015)

    Article  Google Scholar 

  2. Cichocki, A., et al.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  3. Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 5, Toulouse, France, June 2006

    Google Scholar 

  4. Favarelli, E., Testi, E., Pucci, L., Giorgetti, A.: Anomaly detection using WiFi signals of opportunity. In: IEEE International Conference on Signal Processing for Communication Systems (ICSPCS), Surfers Paradise, Gold Coast, Australia, December 2019

    Google Scholar 

  5. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    Article  Google Scholar 

  6. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  7. IEEE 802.22: Standard for Wireless Regional Area Networks-Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Policies and procedures for operation in the TV Bands, July 2011

    Google Scholar 

  8. Ivkovic, G., Spasojevic, P., Seskar, I.: Localization of packet based radio transmitters in space, time, and frequency. In: Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, November 2008

    Google Scholar 

  9. Joho, M., Mathis, H., Lambert, R.H.: Overdetermined blind source separation: using more sensors than source signals in a noisy mixture. In: International Conference on Independent Component Analysis and Blind Signal Separation (ICA), Helsinki, Finland, pp. 81–86, June 2000

    Google Scholar 

  10. Kontos, T., Alyfantis, G.S., Angelopoulos, Y., Hadjiefthymiades, S.: A topology inference algorithm for wireless sensor networks. In: IEEE Symposium on Computers and Communications (ISCC), Cappadocia, Turkey, pp. 479–484, July 2012

    Google Scholar 

  11. Laghate, M., Cabric, D.: Learning wireless networks’ topologies using asymmetric Granger causality. IEEE J. Sel. Topics Signal Process. 12(1), 233–247 (2018). https://doi.org/10.1109/JSTSP.2017.2787478

    Article  Google Scholar 

  12. Mariani, A., Giorgetti, A., Chiani, M.: Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Trans. Commun. 59(12), 3410–3420 (2011). https://doi.org/10.1109/TCOMM.2011.102011.100708

    Article  Google Scholar 

  13. Mariani, A., Giorgetti, A., Chiani, M.: Model order selection based on information theoretic criteria: design of the penalty. IEEE Trans. Signal Process. 63(11), 2779–2789 (2015)

    Article  MathSciNet  Google Scholar 

  14. Nurminen, H., Dashti, M., Piché, R.: A survey on wireless transmitter localization using signal strength measurements. Wirel. Commun. Mobile Comput. 2017, 1–12 (2017)

    Article  Google Scholar 

  15. Pahlavan, K., Li, X., Ylianttila, M., Chana, R., Latva-aho, M.: An overview of wireless indoor geolocation techniques and systems. In: Omidyar, C.G. (ed.) MWCN 2000. LNCS, vol. 1818, pp. 1–13. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45494-2_1

    Chapter  Google Scholar 

  16. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  17. Qin, X., Lee, W.: Statistical causality analysis of INFOSEC alert data. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 73–93. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45248-5_5

    Chapter  Google Scholar 

  18. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000). https://doi.org/10.1103/PhysRevLett.85.461

    Article  Google Scholar 

  19. Sharma, P., Bucci, D.J., Brahma, S.K., Varshney, P.K.: Communication network topology inference via transfer entropy. IEEE Trans. Netw. Sci. Eng. 7, 1–7 (2019). https://doi.org/10.1109/TNSE.2018.2889454

    Article  MathSciNet  Google Scholar 

  20. Sithamparanathan, K., Giorgetti, A.: Cognitive Radio Techniques: Spectrum Sensing, Interference Mitigation and Localization. Artech House Publishers, Boston (2012)

    Google Scholar 

  21. Stoica, P., Selen, Y.: Model-order selection: a review of information criterion rules. IEEE Signal Proc. Mag. 21(4), 36–47 (2004)

    Article  Google Scholar 

  22. Testi, E., Favarelli, E., Giorgetti, A.: Machine learning for user traffic classification in wireless systems. In: European Signal Processing Conference (EUSIPCO), Rome, Italy, pp. 2040–2044, September 2018. https://doi.org/10.23919/EUSIPCO.2018.8553196

  23. Testi, E., Favarelli, E., Pucci, L., Giorgetti, A.: Machine learning for wireless network topology inference. In: International Conference on Signal Processing and Communication Systems (ICSPCS), Surfers Paradise, Gold Coast, Australia, December 2019

    Google Scholar 

  24. Testi, E., Giorgetti, A.: Blind wireless network topology inference. IEEE Trans. Commun. 69, 1109–1120 (2020)

    Google Scholar 

  25. Tilghman, P., Rosenbluth, D.: Inferring wireless communications links and network topology from externals using Granger causality. In: IEEE MILCOM, Military Communications Conference (MILCOM), San Diego, CA, USA, pp. 1284–1289, November 2013. https://doi.org/10.1109/MILCOM.2013.219

  26. Urkowitz, H.: Energy detection of unknown deterministic signals. Proc. IEEE 55(4), 523–531 (1967)

    Article  Google Scholar 

  27. Wax, M., Kailath, T.: Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process 33(2), 387–392 (1985)

    Article  MathSciNet  Google Scholar 

  28. Wenli, J., Teng, G., Meiyin, J.: Researching topology inference based on end-to-end date in wireless sensor networks. In: International Conference on Intelligent Computation Technology and Automation (ICICTA), Shenzhen, China, vol. 2, pp. 683–686, April 2011

    Google Scholar 

  29. Wibral, M., et al.: Measuring information-transfer delays. Plos One 8, 1–19 (2013)

    Article  Google Scholar 

  30. Xu, H., Farajtabar, M., Zha, H.: Learning Granger causality for Hawkes processes. In: International Conference on Machine Learning ICML, New York, NY, USA, vol. 48, February 2016

    Google Scholar 

  31. Yu, C., Chen, K., Cheng, S.: Cognitive radio network tomography. IEEE Trans. on Veh. Technol. 59(4), 1980–1997 (2010)

    Article  Google Scholar 

  32. Yu, X., Hu, D., Xu, J.: Blind Source Separation: Theory and Applications, 1st edn. Wiley, New York (2014)

    Book  Google Scholar 

  33. Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91(433), 365–377 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Testi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Testi, E., Favarelli, E., Giorgetti, A. (2021). Blind Source Separation for Wireless Networks: A Tool for Topology Sensing. In: Caso, G., De Nardis, L., Gavrilovska, L. (eds) Cognitive Radio-Oriented Wireless Networks. CrownCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 374. Springer, Cham. https://doi.org/10.1007/978-3-030-73423-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73423-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73422-0

  • Online ISBN: 978-3-030-73423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics