Skip to main content

Demonstrating Spectrally Efficient Asynchronous Coexistence for Machine Type Communication: A Software Defined Radio Approach

  • Conference paper
  • First Online:
Cognitive Radio-Oriented Wireless Networks (CrownCom 2020)

Abstract

A software defined radio (SDR) approach to demonstrate the coexistence in Machine Type Communication (MTC) scenarios is presented. MTC in recent years has gained significant attention with its inclusion in the 5G business model. Spectrally efficient asynchronous communication is a key enabler in situations involving MTC. Past research has shown that some modifications to baseline cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) can achieve better out-of-band (OOB) suppression and enable asynchronous coexistence. Inspired by this research, we provide a real world example of coexistence using SDR. We demonstrate the ability to asynchronously transmitting waveforms in adjacent channels with very narrow guard bands in between, and still be able to receive and demodulate them with low error vector magnitude (EVM) and low bit error rate (BER) that are comparable to the baseline CP-OFDM that uses synchronous communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-fmcomms3-ebz.html.

  2. 2.

    https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html.

  3. 3.

    https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html.

References

  1. Abdoli, J., Jia, M., Ma, J.: Filtered OFDM: a new waveform for future wireless systems. In: 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 66–70. IEEE (2015)

    Google Scholar 

  2. Bodinier, Q., Bader, F., Palicot, J.: On spectral coexistence of CP-OFDM and FB-MC waveforms in 5G networks. IEEE Access 5, 13883–13900 (2017)

    Article  Google Scholar 

  3. Garcia-Roger, D., de Valgas, J.F., Monserrat, J.F., Cardona, N., Incardona, N.: Hardware testbed for sidelink transmission of 5G waveforms without synchronization. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6 (2016)

    Google Scholar 

  4. Guan, P., et al.: 5G field trials: OFDM-based waveforms and mixed numerologies. IEEE J. Sel. Areas Commun. 35(6), 1234–1243 (2017)

    Article  Google Scholar 

  5. Handagala, S., Leeser, M.: Real time receiver baseband processing platform for sub 6 GHz PHY layer experiments. IEEE Access 8, 105571–105586 (2020)

    Article  Google Scholar 

  6. Handagala, S., Mohamed, M., Xu, J., Onabajo, M., Leeser, M.: Detection of different wireless protocols on an FPGA with the same analog/RF front end. In: Moerman, I., Marquez-Barja, J., Shahid, A., Liu, W., Giannoulis, S., Jiao, X. (eds.) CROWNCOM 2018. LNICST, vol. 261, pp. 25–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05490-8_3

    Chapter  Google Scholar 

  7. Jiao, X., Moerman, I., Liu, W., de Figueiredo, F.A.P.: Radio hardware virtualization for coping with dynamic heterogeneous wireless environments. In: Marques, P., Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds.) CrownCom 2017. LNICST, vol. 228, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76207-4_24

    Chapter  Google Scholar 

  8. Kotzsch, V., Fettweis, G.: Interference analysis in time and frequency asynchronous network MIMO OFDM systems. In: 2010 IEEE Wireless Communication and Networking Conference, pp. 1–6. IEEE (2010)

    Google Scholar 

  9. Levanen, T., Pirskanen, J., Pajukoski, K., Renfors, M., Valkama, M.: Transparent Tx and Rx waveform processing for 5G new radio mobile communications. IEEE Wirel. Commun. 26(1), 128–136 (2018)

    Article  Google Scholar 

  10. Medjahdi, Y., et al.: On the road to 5G: comparative study of physical layer in MTC context. IEEE Access 5, 26556–26581 (2017)

    Article  Google Scholar 

  11. Mohamed, M., Handagala, S., Xu, J., Leeser, M., Onabajo, M.: Strategies and demonstration to support multiple wireless protocols with a single RF front-end. IEEE Wirel. Commun. 27(3), 88–95 (2020)

    Article  Google Scholar 

  12. Oppenheim, A.V., Buck, J.R., Schafer, R.W.: Discrete-Time Signal Processing, vol. 2, pp. 558–560. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  13. Sexton, C., Bodinier, Q., Farhang, A., Marchetti, N., Bader, F., DaSilva, L.A.: Enabling asynchronous machine-type D2D communication using multiple waveforms in 5G. IEEE Internet Things J. 5(2), 1307–1322 (2018)

    Article  Google Scholar 

  14. Thomas, T.A., Vook, F.W.: Asynchronous interference suppression in broadband cyclic-prefix communications. In: 2003 IEEE Wireless Communications and Networking, WCNC 2003, vol. 1, pp. 568–572. IEEE (2003)

    Google Scholar 

  15. Vakilian, V., Wild, T., Schaich, F., ten Brink, S., Frigon, J.F.: Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 223–228. IEEE (2013)

    Google Scholar 

  16. Wunder, G., et al.: 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52(2), 97–105 (2014)

    Article  Google Scholar 

  17. Wyglinski, A.M., Orofino, D.P., Ettus, M.N., Rondeau, T.W.: Revolutionizing software defined radio: case studies in hardware, software, and education. IEEE Commun. Mag. 54(1), 68–75 (2016)

    Article  Google Scholar 

  18. Yli-Kaakinen, J., Levanen, T., Palin, A., Renfors, M., Valkama, M.: Generalized fast-convolution-based filtered-OFDM: techniques and application to 5G new radio. IEEE Trans. Sig. Process. 68, 1213–1228 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yu, C., Xiangming, W., Xinqi, L., Wei, Z.: Research on the modulation and coding scheme in LTE TDD wireless network. In: 2009 International Conference on Industrial Mechatronics and Automation, pp. 468–471. IEEE (2009)

    Google Scholar 

  20. Zayani, R., Medjahdi, Y., Shaiek, H., Roviras, D.: WOLA-OFDM: a potential candidate for asynchronous 5G. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–5. IEEE (2016)

    Google Scholar 

  21. Zayani, R., Shaiek, H., Cheng, X., Fu, X., Alexandre, C., Roviras, D.: Experimental testbed of post-OFDM waveforms toward future wireless networks. IEEE Access 6, 67665–67680 (2018)

    Article  Google Scholar 

  22. Zhang, X., Chen, L., Qiu, J., Abdoli, J.: On the waveform for 5G. IEEE Commun. Mag. 54(11), 74–80 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF under Grant CNS-1836880, in part by MathWorks, and by donations from Analog Devices and Xilinx, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Leeser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Handagala, S., Leeser, M. (2021). Demonstrating Spectrally Efficient Asynchronous Coexistence for Machine Type Communication: A Software Defined Radio Approach. In: Caso, G., De Nardis, L., Gavrilovska, L. (eds) Cognitive Radio-Oriented Wireless Networks. CrownCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 374. Springer, Cham. https://doi.org/10.1007/978-3-030-73423-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73423-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73422-0

  • Online ISBN: 978-3-030-73423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics