Skip to main content

Closed-Loop Systems Engineering—Supporting Smart System Design Adaption by Integrating MBSE and IoT

  • Conference paper
  • First Online:
Complex Systems Design & Management
  • 1320 Accesses

Abstract

This contribution introduces an approach for optimizing smart products and systems through a Closed-Loop Systems Engineering approach. The approach focuses on combining aspects from Model-Based Systems Engineering and the Internet of Things to optimize the system by seamless feedback of product usage data to the early development phase. For evaluation and validation purposes, the approach is prototypically applied to the example of an excavator’s product generation, which is used in different variants in different markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomiyama, T., Lutters, E., Stark, R., Abramovici, M.: Development capabilities for smart products. CIRP Ann. 68(2), 727–750 (2019)

    Article  Google Scholar 

  2. Paquin, R.: The Systems Engineering Closed Loop Process: The Key for Validation. Aberdeen Group (2014)

    Google Scholar 

  3. Eigner, M., Koch, W., Muggeo, C. (eds.): Modellbasierter Entwicklungsprozess cybertronischer Systeme—Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer, Berlin (2017)

    Google Scholar 

  4. Abramovici, M., Göbel, J.C., Savarino, P.: Virtual twins as integrative components of smart products. In: IFIP Advances in Information and Communication Technology Product Lifecycle Management for Digital Transformation of Industries, pp. 217–226 (2016)

    Google Scholar 

  5. Abramovici, M., Dang, H.B., Göbel, J.C., Savarino, P.: Systematization of IPS2 diversification potentials using product lifecycle data. Procedia CIRP 288–293 (2016)

    Google Scholar 

  6. Stark, R., Krause, F.L., Kind, C., et al.: Competing in engineering design—the role of virtual product creation. CIRP J. Manuf. Sci. Technol. 3, 175–184 (2010)

    Article  Google Scholar 

  7. Gregorzik, S.: Smart business blueprints—how digital business gets going in the Internet of Things. Contact Software White Paper, 2017. https://www.contact-software.com/en/white-paper/smart-business-blueprints/

  8. Abramovici, M.: Smart products. In: Laperrière, L., Reinhart, G. (eds.) CIRP Encyclopedia of Production Engineering. Springer, Berlin (2015)

    Google Scholar 

  9. Porter, M.E., Heppelmann, J.: How smart, connected products are transforming companies technology & operations. Harvard Bus. Rev. (2015)

    Google Scholar 

  10. Mühlhäuser, M.: Smart products: an introduction. In: Communications in Computer and Information Science Constructing Ambient Intelligence, AmI 2007 Workshops Darmstadt, Germany, pp. 158–164 (2007)

    Google Scholar 

  11. Eigner, M., Dickopf, T., Apostolov, H., Schäfer, P., Faißt, K.G., Keßler, A.: System lifecycle management—initial approach for a sustainable product development process based on methods of model based systems engineering. In: Fukuda, et al. (eds.) 11th IFIP WG 5.1 International Conference—PLM 2014, pp. 287–300. Springer, Heidelberg (2014)

    Google Scholar 

  12. Eigner, M., Dickopf, T., Apostolov, H.: System lifecycle management—an approach for developing cybertronic systems in consideration of sustainability aspects. In: Takata, et al. (eds.). Procedia CIRP—The 24th CIRP Conference on Life Cycle Engineering, Kamakura, Japan, 8–10 Mar 2017. Elsevier Procedia, pp. 128–133 (2017)

    Google Scholar 

  13. Abramovici, M., Göbel, J.C., Hoang, B.D.: Semantic data management for the development and continuous reconfiguration of smart products and systems. CIRP Ann. 65(1), 185–188 (2016)

    Google Scholar 

  14. Gartner. Gartner Hype Cycle for Emerging Technologies. https://www.gartner.com/en/newsroom/press-releases

  15. Göckel, N., Müller, P.: Entwicklung und Betrieb Digitaler Zwillinge. In: Eigner, M. (ed.) Zeitung für wirtschaftlichen Fabrikbetrieb—Digitaler Zwilling. Hanser, Band 115 (2020)

    Google Scholar 

  16. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017)

    Article  Google Scholar 

  17. Stark, R., Damerau, T.: Digital twin. In: Chatti, S., Laperrière, L., Reinhart, G., Tolio, T. (eds.) The International Academy for Production Engineering, CIRP Encyclopedia of Production Engineering. Springer, Berlin (2019)

    Google Scholar 

  18. Göbel, J.C., Eickhoff, T.: Konzeption von Digitalen Zwillingen smarter Produkte. In: Eigner, M. (ed.) Zeitung für wirtschaftlichen Fabrikbetrieb—Digitaler Zwilling. Hanser, Band 115 (2020)

    Google Scholar 

  19. Di Maio, M., Kapos, G.D., Klusmann, N., Atorf, L., Dahmen, U., Schluse, M., Rossmann, J.: Closed-loop systems engineering (CLOSE): integrating experimentable digital twins with the model-driven engineering process. In: 4th IEEE International Symposium on Systems Engineering, ISSE (2018)

    Google Scholar 

  20. Dickopf, T., Apostolov, H., Müller, P., Göbel, J.C., Forte, S.: A holistic system lifecycle engineering approach—closing the loop between system architecture and digital twins. In: Putnik, G. (ed.) Procedia CIRP—29th CIRP Design Conference 2019, Póvoa de Varzim, Portugal, 8–10 May 2019. Elsevier Procedia, pp. 538–544 (2019)

    Google Scholar 

  21. Dickopf, T.: A holistic methodology for the development of cybertronic systems in the context of the Internet of Things. Shaker (2020)

    Google Scholar 

  22. Schluse, M., Atorf, L., Rossmann, J.: Experimentable digital twins for model-based systems engineering and simulation-based development. In: 2017 Annual IEEE International Systems Conference (SysCon 2017)

    Google Scholar 

  23. Strolia, Z., Pavalkis, S.: Building executable SysML model—automatic transmission system (Part 1). 2017. https://blog.nomagic.com/building-executable-sysml-model-automatic-transmission-system-part-1/

  24. Albers, A., Reiss, N., Bursac, N., Richter, T.: iPeM—Integrated Product Engineering Model in Context of Product Generation Engineering. Elsevier (2016)

    Google Scholar 

  25. Massmann, M., Meyer, M., Dumitrescu, R., von Enzberg, S., Frank, M., Koldewey, C., Kühn, A., Reinhold, J.: Significance and challenges of data-driven product generation and retrofit planning. In: Putnik, G. (ed.) Procedia CIRP—29th CIRP Design Conference 2019, Póvoa de Varzim, Portugal, 8–10 May 2019. Elsevier Procedia, pp. 992–997 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dickopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dickopf, T., Forte, S., Apostolov, C., Göbel, J.C. (2021). Closed-Loop Systems Engineering—Supporting Smart System Design Adaption by Integrating MBSE and IoT. In: Krob, D., Li, L., Yao, J., Zhang, H., Zhang, X. (eds) Complex Systems Design & Management . Springer, Cham. https://doi.org/10.1007/978-3-030-73539-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73539-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73538-8

  • Online ISBN: 978-3-030-73539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics