Skip to main content

Research on a Malicious Code Detection Method Based on Convolutional Neural Network in a Domestic Sandbox Environment

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12653))

Included in the following conference series:

Abstract

For malicious code detection, the paper proposes an improved serialization detection method based on convolutional neural network algorithm, it adopts the architecture of “domestic environment virtual sandbox + convolutional neural network detection model + dynamic simulation”. First, extract the features of the API sequence, use the Densenet model to detect on the basis of redundant information preprocessing, and then use the characteristics of the convolutional neural network in deep learning to process time series data to directly model and learn the sequence. Finally, based on virtualization technology, a simulation experiment is carried out in the virtual sandbox environment of a domestic safe and reliable operating system. Through three comparative experiments of malicious code detection accuracy, missed detection rate and efficiency, The results show that the improved method has high efficiency and accuracy in detecting a large number of malicious codes, and it can be applied to the detection of malicious codes in a safe and controllable operating system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, M., Ulyanov, D., Semenov, S., et al.: Novel feature extraction‘ selection and fusion for effective malware family classification. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 183–194. ACM (2018)

    Google Scholar 

  2. Lian, S.: Data backup mechanism based on virtualization. Comput. Syst. Appl. 8(24), 247–251 (2017)

    Google Scholar 

  3. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disassembly. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 290–299. ACM (2017)

    Google Scholar 

  4. Kolbitsch, C., Kirda, E., Kruegel, C.: The power of procrastination: detection and mitigation of execution-stalling malicious code. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 285–296. ACM (2019)

    Google Scholar 

  5. Metz, J.: VMware Virtual Disk (VMDK) format specification [DB/OL], December 2018

    Google Scholar 

  6. Kumar, R., Gupta, N., Charu, S., et al.: Open source solution for cloud computing platform using OpenStack. Int. J. Comput. Sci. Mob. Comput. 3(5), 89–98 (2018)

    Google Scholar 

  7. Hong, S., Lv, C., Zhao, T., et al.: Cascading failure analysis and restoration strategy in an interdependent network. J. Phys. A Math. Theor. 49(19), 195101 (2016)

    Article  Google Scholar 

  8. Michail, H., Kakarountas, A.P., Koufopavlou, O., Goutis, C.E.: A low-power and high-throughput implementation of the SHA-l hash function. In: Kobe, IEEE International Symposium on Circuits and Systems (ISCAS), Japan, pp. 23–26 (2019)

    Google Scholar 

  9. Han, K.S., Lim, J.H., Kang, B.J., et al.: Malware analysis using visualized images and entropy graphs. Int. J. Inf. Secur. 14(6), 1–14 (2019)

    Google Scholar 

  10. Lu, X., Jiang, F., Zhou, X., Cui, B., Yi, S., Sha, J.: API based sequence and statistical features in a combined malware detection architecture. J. Tsinghua Univ. (Sci. Technol.) 58(5), 500–508 (2018)

    Google Scholar 

  11. Hong, S., Yue, T., Liu, H.: Vehicle energy system active defense: a health assessment of lithium-ion batteries. Int. J. Intell. Syst. (2020). https://doi.org/10.1002/int.22309

  12. Liao, G.H., Liu, J.Y.: A malicious code detection method based on data mining and machine learning. J. Inf. Secur. Res. 2, 74–79 (2016)

    Google Scholar 

  13. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 137–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_11

    Chapter  Google Scholar 

  14. Tobiyama, S., Yamaguchi, Y., Shimada, H., et al.: Malware detection with deep neural network using process behavior. In: 40th Annual IEEE Conference on Computer Software and Applications (COMPSAC), Atlanta, GA, USA, pp. 577–582. IEEE (2016)

    Google Scholar 

  15. Hong, S., Zhu, J., Braunstein, L.A., Zhao, T., You, Q.: Cascading failure and recovery of spatially interdependent networks. J. Stat. Mech. Theor. Exp. 2017(10), 103208 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

First of all, I would like to thank all the authors for their joint efforts to complete this paper. Second, the authors are highly thankful for National Key Research Program (2019YFB1706001), National Natural Science Foundation of China (61773001), Industrial Internet Innovation Development Project (TC190H46B). And this project supported by Chinese National Key Laboratory of Science and Technology on Information System Security.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, J., Sheng, H., Zheng, Y., Li, W. (2021). Research on a Malicious Code Detection Method Based on Convolutional Neural Network in a Domestic Sandbox Environment. In: Cheng, J., Tang, X., Liu, X. (eds) Cyberspace Safety and Security. CSS 2020. Lecture Notes in Computer Science(), vol 12653. Springer, Cham. https://doi.org/10.1007/978-3-030-73671-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73671-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73670-5

  • Online ISBN: 978-3-030-73671-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics