Skip to main content

Lifting Convex Inequalities for Bipartite Bilinear Programs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12707))

Abstract

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets described by one bipartite bilinear constraint together with bounds, it is always possible to lift a seed inequality that is valid for a restriction obtained by fixing variables to their bounds, when the lifting is accomplished using affine functions of the fixed variables. In this setting, sequential lifting involves solving a non-convex nonlinear optimization problem each time a variable is lifted, just as in Mixed Integer Linear Programming. To reduce the computational burden associated with this procedure, we develop a framework based on subadditive approximations of lifting functions that permits sequence independent lifting of seed inequalities for separable bipartite bilinear sets. In particular, this framework permits the derivation of closed-form valid inequalities. We then study a separable bipartite bilinear set where the coefficients form a minimal cover with respect to right-hand-side. For this set, we derive a “bilinear cover inequality”, which is second-order cone representable. We argue that this bilinear covering inequality is strong by showing that it yields a constant-factor approximation of the convex hull of the original set. We study its lifting function and construct a two-slope subadditive upper bound. Using this subadditive approximation, we lift fixed variable pairs in closed-form, thus deriving a “lifted bilinear cover inequality” that is valid for general separable bipartite bilinear sets with box constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term bipartite, perhaps redundantly, to highlight that variables can be divided into two groups, such that any degree two term comes from product of variables one each from these two groups [22].

  2. 2.

    We say “almost”, since there are non-packing examples, such as \(S:= \{x,y \in [0, 1]^2\,|\, x_1y_1 - 100x_2y_2 \ge -98\}\), where there is no partition that yields a minimal cover. Such sets are “overwhelmingly” like a packing set; in the case of the example, it is a perturbation of the packing set \(\{x_2, y_2 \in [0, 1]\,|\, 100x_2y_2\le 98\}\). For such sets it is not difficult to show that \(conv (S)\) is polyhedral.

References

  1. Agra, A., Constantino, M.F.: Lifting two-integer knapsack inequalities. Math. Program. 109(1), 115–154 (2007). https://doi.org/10.1007/s10107-006-0705-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher, K.M., Burer, S., Park, K.: Convex hull representations for bounded products of variables. arXiv preprint arXiv:2004.07233 (2020)

  3. Atamtürk, A.: On the facets of the mixed-integer knapsack polyhedron. Math. Program. 98(1), 145–175 (2003). https://doi.org/10.1007/s10107-003-0400-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Atamtürk, A.: Sequence independent lifting for mixed-integer programming. Oper. Res. 52(3), 487–490 (2004)

    Article  MathSciNet  Google Scholar 

  5. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Math. Program. 126(2), 351–363 (2011). https://doi.org/10.1007/s10107-009-0282-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Averkov, G., Basu, A.: Lifting properties of maximal lattice-free polyhedra. Math. Program. 154(1–2), 81–111 (2015). https://doi.org/10.1007/s10107-015-0865-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975). https://doi.org/10.1007/BF01580440

    Article  MathSciNet  MATH  Google Scholar 

  8. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1–3), 3–44 (1998)

    Article  MathSciNet  Google Scholar 

  9. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4(4), 224–234 (1980)

    Article  MathSciNet  Google Scholar 

  10. Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal covers. SIAM J. Appl. Math. 34(1), 119–148 (1978)

    Article  MathSciNet  Google Scholar 

  11. Basu, A., Campêlo, M., Conforti, M., Cornuéjols, G., Zambelli, G.: Unique lifting of integer variables in minimal inequalities. Math. Program. 141(1–2), 561–576 (2013). https://doi.org/10.1007/s10107-012-0560-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Basu, A., Cornuéjols, G., Köppe, M.: Unique minimal liftings for simplicial polytopes. Math. Oper. Res. 37(2), 346–355 (2012)

    Article  MathSciNet  Google Scholar 

  13. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal inequalities. SIAM J. Discrete Math. 33(2), 755–783 (2019)

    Article  MathSciNet  Google Scholar 

  14. Basu, A., Paat, J.: Operations that preserve the covering property of the lifting region. SIAM J. Optim. 25(4), 2313–2333 (2015)

    Article  MathSciNet  Google Scholar 

  15. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM (2001)

    Google Scholar 

  16. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. Math. Program. 183, 1–44 (2020). https://doi.org/10.1007/s10107-020-01484-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151(1), 89–116 (2015). https://doi.org/10.1007/s10107-015-0888-z

    Article  MathSciNet  MATH  Google Scholar 

  18. Ceria, S., Cordier, C., Marchand, H., Wolsey, L.A.: Cutting planes for integer programs with general integer variables. Math. Program. 81(2), 201–214 (1998). https://doi.org/10.1007/BF01581105

    Article  MathSciNet  MATH  Google Scholar 

  19. Chung, K., Richard, J.P.P., Tawarmalani, M.: Lifted inequalities for 0–1 mixed-integer bilinear covering sets. Math. Program. 145(1–2), 403–450 (2014). https://doi.org/10.1007/s10107-013-0652-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting. Oper. Res. 59(3), 569–577 (2011)

    Article  MathSciNet  Google Scholar 

  21. Dey, S.S., Richard, J.P.P.: Linear-programming-based lifting and its application to primal cutting-plane algorithms. INFORMS J. Comput. 21(1), 137–150 (2009)

    Article  MathSciNet  Google Scholar 

  22. Dey, S.S., Santana, A., Wang, Y.: New SOCP relaxation and branching rule for bipartite bilinear programs. Optim. Eng. 20(2), 307–336 (2019)

    Article  MathSciNet  Google Scholar 

  23. Dey, S.S., Wolsey, L.A.: Composite lifting of group inequalities and an application to two-row mixing inequalities. Discrete Optim. 7(4), 256–268 (2010)

    Article  MathSciNet  Google Scholar 

  24. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J. Optim. 20(6), 2890–2912 (2010)

    Article  MathSciNet  Google Scholar 

  25. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program. 124(1–2), 143–174 (2010). https://doi.org/10.1007/s10107-010-0362-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Espinoza, D., Fukasawa, R., Goycoolea, M.: Lifting, tilting and fractional programming revisited. Oper. Res. Lett. 38(6), 559–563 (2010)

    Article  MathSciNet  Google Scholar 

  27. Gómez, A.: Submodularity and valid inequalities in nonlinear optimization with indicator variables (2018)

    Google Scholar 

  28. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3(1), 23–85 (1972). https://doi.org/10.1007/BF01584976

    Article  MathSciNet  MATH  Google Scholar 

  29. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for mixed 0–1 integer programs. Math. Program. 85(3), 439–467 (1999). https://doi.org/10.1007/s101070050067

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Sequence independent lifting in mixed integer programming. J. Comb. Optim. 4(1), 109–129 (2000)

    Article  MathSciNet  Google Scholar 

  31. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001). https://doi.org/10.1007/PL00011430

    Article  MathSciNet  MATH  Google Scholar 

  32. Gupte, A.: Mixed integer bilinear programming with applications to the pooling problem. Ph.D. thesis, Georgia Institute of Technology (2012)

    Google Scholar 

  33. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math. Program. 8(1), 179–206 (1975). https://doi.org/10.1007/BF01580442

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaparis, K., Letchford, A.N.: Local and global lifted cover inequalities for the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 186(1), 91–103 (2008)

    Article  MathSciNet  Google Scholar 

  35. Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the Gomory-Johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015)

    Article  MathSciNet  Google Scholar 

  36. Martin, A., Weismantel, R.: The intersection of knapsack polyhedra and extensions. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 243–256. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69346-7_19

    Chapter  MATH  Google Scholar 

  37. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I - convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/BF01580665

    Article  MATH  Google Scholar 

  38. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 307–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_24

    Chapter  Google Scholar 

  39. Narisetty, A.K., Richard, J.P.P., Nemhauser, G.L.: Lifted tableaux inequalities for 0–1 mixed-integer programs: a computational study. INFORMS J. Comput. 23(3), 416–424 (2011)

    Article  MathSciNet  Google Scholar 

  40. Nguyen, T.T., Richard, J.P.P., Tawarmalani, M.: Deriving convex hulls through lifting and projection. Math. Program. 169(2), 377–415 (2018). https://doi.org/10.1007/s10107-017-1138-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5(1), 199–215 (1973). https://doi.org/10.1007/BF01580121

    Article  MathSciNet  MATH  Google Scholar 

  42. Padberg, M.W.: A note on zero-one programming. Oper. Res. 23(4), 833–837 (1975)

    Article  Google Scholar 

  43. Rahman, H., Mahajan, A.: Facets of a mixed-integer bilinear covering set with bounds on variables. J. Global Optim. 74(3), 417–442 (2019)

    Article  MathSciNet  Google Scholar 

  44. Richard, J.P.P.: Lifting techniques for mixed integer programming. In: Wiley Encyclopedia of Operations Research and Management Science (2010)

    Google Scholar 

  45. Richard, J.-P.P., Dey, S.S.: The group-theoretic approach in mixed integer programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 727–801. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_19

    Chapter  Google Scholar 

  46. Richard, J.P.P., de Farias Jr, I.R., Nemhauser, G.L.: Lifted inequalities for 0–1 mixed integer programming: basic theory and algorithms. Math. Program. 98(1–3), 89–113 (2003). https://doi.org/10.1007/s10107-003-0398-2

    Article  MathSciNet  MATH  Google Scholar 

  47. Richard, J.P.P., de Farias Jr, I.R., Nemhauser, G.L.: Lifted inequalities for 0–1 mixed integer programming: superlinear lifting. Math. Program. 98(1–3), 115–143 (2003). https://doi.org/10.1007/s10107-003-0399-1

    Article  MathSciNet  MATH  Google Scholar 

  48. Richard, J.P.P., Li, Y., Miller, L.A.: Valid inequalities for MIPs and group polyhedra from approximate liftings. Math. Program. 118(2), 253–277 (2009). https://doi.org/10.1007/s10107-007-0190-9

    Article  MathSciNet  MATH  Google Scholar 

  49. Richard, J.P.P., Tawarmalani, M.: Lifting inequalities: a framework for generating strong cuts for nonlinear programs. Math. Program. 121(1), 61–104 (2010). https://doi.org/10.1007/s10107-008-0226-9

    Article  MathSciNet  MATH  Google Scholar 

  50. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. SIAM J. Optim. 30(4), 2983–2997 (2020)

    Article  MathSciNet  Google Scholar 

  51. Tawarmalani, M., Richard, J.P.P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124(1–2), 481–512 (2010). https://doi.org/10.1007/s10107-010-0374-6

    Article  MathSciNet  MATH  Google Scholar 

  52. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Oper. Res. 24(2), 367–372 (1976)

    Article  MathSciNet  Google Scholar 

  53. Wolsey, L.A.: Valid inequalities and superadditivity for 0–1 integer programs. Math. Oper. Res. 2(1), 66–77 (1977)

    Article  MathSciNet  Google Scholar 

  54. Zeng, B., Richard, J.-P.P.: A framework to derive multidimensional superadditive lifting functions and its applications. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 210–224. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_17

    Chapter  Google Scholar 

  55. Zeng, B., Richard, J.P.P.: A polyhedral study on 0–1 knapsack problems with disjoint cardinality constraints: facet-defining inequalities by sequential lifting. Discrete Optim. 8(2), 277–301 (2011)

    Article  MathSciNet  Google Scholar 

  56. Zeng, B., Richard, J.P.P.: A polyhedral study on 0–1 knapsack problems with disjoint cardinality constraints: strong valid inequalities by sequence-independent lifting. Discrete Optim. 8(2), 259–276 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, X., Dey, S.S., Richard, JP.P. (2021). Lifting Convex Inequalities for Bipartite Bilinear Programs. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73879-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73878-5

  • Online ISBN: 978-3-030-73879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics