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Abstract. We consider a two-stage robust facility location problem on
a metric under an uncertain demand. The decision-maker needs to de-
cide on the (integral) units of supply for each facility in the first stage
to satisfy an uncertain second-stage demand, such that the sum of first
stage supply cost and the worst-case cost of satisfying the second-stage
demand over all scenarios is minimized. The second-stage decisions are
only assignment decisions without the possibility of adding recourse sup-
ply capacity. This makes our model different from existing work on two-
stage robust facility location and set covering problems. We consider an
implicit model of uncertainty with an exponential number of demand
scenarios specified by an upper bound k on the number of second-stage
clients. In an optimal solution, the second-stage assignment decisions
depend on the scenario; surprisingly, we show that restricting to a fixed
(static) fractional assignment for each potential client irrespective of the
scenario gives us an O(log k/ log log k)-approximation for the problem.
Moreover, the best such static assignment can be computed efficiently
giving us the desired guarantee.

1 Introduction

We consider two-stage robust facility location problems under demand uncer-
tainty where we are given a set of clients and a set of facilities in a common
metric space. In the first stage, the decision-maker needs to select the (integral)
units supply at each facility. The uncertain demand is then selected adversarially
and needs to be satisfied by the existing supply with the minimum assignment
cost in the second stage. The goal is to determine the first-stage supply such
that the sum of first-stage supply cost and the worst-case assignment cost over
all demand scenarios is minimized. Our problem is motivated by settings where
the lead time to procure supply is large and obtaining additional units of supply
in the second stage is not feasible. The uncertain second-stage demand must
then be satisfied by supply units from the first stage, a common constraint in
many applications. This is a departure from existing work on two-stage robust
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facility location, network design and, more generally, robust covering problems
that have been studied extensively in the literature [6,7,1,9] where the second-
stage decisions allow for “adding more supply” (more specifically adding more
sets/facilities to satisfy the requirement).

In this paper, we consider an implicit model of uncertainty with exponentially-
many demand scenarios specified by an upper bound k on the number of second-
stage demand clients. Since the number of scenarios is exponentially-many (spec-
ified compactly), we can not efficiently solve even the LP relaxation for the prob-
lem. In contrast, if the set of second-stage scenarios are explicitly specified (for
the explicit scenario model, see for instance [6,1]), we can write a polynomially-
sized LP relaxation with assignment decisions for each scenario. The main chal-
lenge then is related to obtaining an integral solution, which for the case of set
covering and several network design problems can be reduced to deterministic
versions (see, for instance, Dhamdhere et al. [6]).

In contrast, in an implicit model of uncertainty (with possibly exponentially-
many scenarios), one of the fundamental challenges is to even approximately
solve the linear relaxation of the problem efficiently. The implicit model of un-
certainty with an upper bound on number of uncertain second-stage clients or
elements has been studied extensively in the literature. Feige et al. [7] show under
a reasonable complexity assumption that it is hard to solve the LP relaxation of a
two-stage set covering problem within a factor better than Ω(log n/ log logn) un-
der this implicit model of uncertainty. They also give anO(log2 n)-approximation
for the 0− 1 two-stage robust set-covering problem. Gupta et al. [9] give an im-
proved O(log n)-approximation for the set-covering problem, thereby matching
the deterministic approximation guarantee. El Housni and Goyal [12] show that a
static policy (that is, linear in the set of second-stage elements, also referred to as
an affine policy) gives an O(log n/ log logn)-approximation for the two-stage LP,
thereby matching the hardness lower bound for the fractional problem. Gupta et
al. [10] and Khandekar et al. [14] present approximations for several network de-
sign problems under the implicit model of uncertainty. Although there is a large
body of work in this direction, as we mentioned earlier, our problem is different
from set covering, since there is no possibility of adding recourse capacity; prior
results do not imply an approximation for our model.

Other related work. Many variants of facility location problems have been
studied extensively in the literature, including both deterministic versions as
well as variants that address demand uncertainty. We refer the reader to [17] for
a review of the many variants of deterministic facility location problems. Among
the models that address demand uncertainty in the facility location problems, in
addition to robust [2,4], there are also stochastic [11,13,20,16] and distribution-
ally robust [15,3,5] models that have been studied extensively in the literature.
In a stochastic model, there is a distribution on the second-stage demand scenar-
ios and the goal is to minimize the total expected cost. A distributionally robust
model can be thought of as a hybrid between stochastic and robust where the
second-stage distribution is selected adversarially from a pre-specified set and
the goal is to minimize the worst-case expected cost. We refer the reader to the
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survey [19] for an extensive review of facility location problems under uncer-
tainty.

1.1 Our Contributions

Let us begin with a formal problem definition. We are given a set of n facilities
F and m clients C in a common metric d where dij denotes the distance between
i and j. For each facility i ∈ F , there is a cost ci per unit of supply at i. The
demand uncertainty is modeled by an implicit set of scenarios Ck that includes
all subsets of clients C of size at most k. The decision-maker needs to select an
(integral) number of units of supply xi for each facility i ∈ F in the first-stage.
An adversary observes the first stage decisions and selects a worst-case demand
scenario S ∈ Ck that must be satisfied with the first-stage supply, where each
client in the realized scenario needs one unit of supply. The goal is to minimize
the sum of the first-stage supply cost and the worst-case assignment cost over
all second-stage demand scenarios. We refer to this problem as soft-capacitated
robust facility location (SCRFL). Typically in the literature, soft-capacitated refer
to settings where violations of capacity upper bounds are allowed. The analogue
here is that we can add any amount of supply in a facility without upper bounds
(xi ∈ Z+) but we pay a per unit cost of supply.

We consider a class of static assignment policies, where each of the m clients
has a static fractional assignment to facilities that is independent of the scenario,
leading to a feasible second-stage solution for each demand scenario, while re-
specting supply capacities. Note this is a restriction, since the optimal second-
stage assignment decisions are scenario-dependent in general. As a warm-up, we
show that static assignment policies are optimal for the uncapacitated case with
unlimited supply at each open facility (i.e., there is a cost ci to open facility i
with unlimited supply). We refer to this problem as uncapacitated robust facility

location (URFL). This is based on the intuition that each client can be assigned
to the closest open facilities in an optimal solution in any scenario; this leads to
optimality of a static assignment policy for the LP relaxation (Theorem 1).

Theorem 1. A static assignment policy is optimal for the linear relaxation of

(URFL).

The optimality of static assignment is not true in general when the supply at
facilities is constrained (or equivalently, there is a cost per unit of supply). The
main contribution in this paper is to show that static assignment policies give an
O(log k/ log log k)-approximation for the LP relaxation of (SCRFL) (Theorem 2).
We show this by constructing such a solution, starting from an optimal first-stage
supply. The optimal static assignment policies can be computed efficiently by
solving a compact LP.

Theorem 2. A static assignment policy gives O(log k/ log log k)-approximation

for the linear relaxation of (SCRFL).

Furthermore, the fractional supply in the first stage can be rounded to an
integral supply using ideas similar to rounding algorithms for the deterministic



4 El Housni et al.

facility location [18]. In particular, the static assignment solution for the unca-
pacitated case can be rounded to give a 4-approximation algorithm for (URFL).
The static assignment solution for the soft-capacitated case can be rounded
within a constant factor, which results in an O(log k/ log log k)-approximation
algorithm for (SCRFL). We would like to note that while the fractional assign-
ment is static in our approximate LP solution, our integral assignment for any
client in the second-stage depends on the other demand clients in the scenario;
thereby, making our static assignment policy adaptive in implementation.

2 Warm-up: uncapacitated robust facility location

2.1 Problem formulation

In this section, we consider the uncapacitated robust facility location problem

(URFL) where for each i ∈ F , there is a cost ci to open facility i with unlimited
supply. The problem can be stated as the following integer program, where each
binary variable xi, i ∈ F indicates if facility i is opened and each ySij , i ∈ F , j ∈

S, S ∈ Ck indicates the assignment of client j to facility i in scenario S.

min
∑

i∈F

cixi + max
S∈Ck

∑

i∈F

∑

j∈S

dijy
S
ij

s.t.
∑

i∈F

ySij ≥ 1, ∀S ∈ Ck, ∀j ∈ S,

xi ≥ ySij , ∀i ∈ F , ∀S ∈ Ck, ∀j ∈ S,

xi ∈ {0, 1}, y
S
ij ≥ 0, ∀i ∈ F , ∀S ∈ Ck, ∀j ∈ S.

(URFL)

Note that the second-stage problem is a transportation problem and since
the demand of a client is integral (0 or 1), the optimal solution ySij is integral
as well. The special case of (URFL) where the uncertainty set contains only a
single scenario corresponds to the NP-hard classical and well-studied uncapaci-
tated facility location problem, which is hard to approximate within a constant
better than 1.463 unless NP has an O(nO(log logn))-time algorithm [8]. We let
(LP-URFL) denote the linear relaxation of (URFL), where we replace xi ∈ {0, 1}
by xi ≥ 0 for each i ∈ F . We would like to note that, in our model, the number
of scenarios could be exponential in the dimension of the problem. Hence, in
general, even the linear relaxation of such a problem could be challenging. How-
ever, we show that (LP-URFL) can be solved in polynomial time using a Static

Assignment Policy for the second-stage variables. Moreover, we can round the
fractional solution losing only a constant factor, thereby getting a constant ap-
proximation for (URFL). This section serves as a warm-up for introducing and
motivating static assignment policies before addressing the class of capacitated
robust facility location problems.
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2.2 Static assignment policy

Consider an optimal solution of (URFL). Since each open facility can have an
unlimited amount of supply, each client in the realized scenario is assigned to the
closest facility among the opened ones. Therefore, a client j is always assigned
to the same open facility in all scenarios S where j ∈ S. The same observation
holds as well for (LP-URFL) where each client is assigned to the same fractionally
opened facilities independent of the realized scenario. Thus, the assignment of a
client is static. This can be captured by the following policy.

Static assignment policy. There exists yij ≥ 0 for each i ∈ F , j ∈ C such that

∀S ∈ Ck, ∀i ∈ F , ∀j ∈ S, ySij = yij . (1)

Proof of Theorem 1. Let (x∗,y∗S , S ∈ Ck) be an optimal solution to (LP-URFL).
Since there are no capacities on facilities, each client j is assigned to the clos-
est fractionally opened facilities. In particular, for each j ∈ C, let πj be a
permutation of F = {1, . . . , n} such that dπj(1)j ≤ dπj(2)j ≤ . . . ≤ dπj(n)j ,
and let ℓ = min{p | x∗

πj(1)
+ x∗

πj(2)
+ . . . + x∗

πj(p)
≥ 1}. Denote x̂πj(ℓ) =

1− (x∗
πj(1)

+ . . .+x∗
πj(ℓ−1)). The optimal solution can be written in the form (1)

as follows: for S ∈ Ck and j ∈ S; ySij = x∗
i for i ∈ {πj(1), . . . , πj(ℓ− 1)}, ySij = x̂i

for i = πj(ℓ), and ySij = 0, otherwise. ⊓⊔
Let (Static-URFL) denote the problem after restricting the second-stage vari-

ables ySij in (LP-URFL) to a policy (1), which can then be reformulated as follows:

min
∑

i∈F

cixi + max
S∈Ck

∑

i∈F

∑

j∈C

1(j ∈ S) · dijyij

s.t.
∑

i∈F

yij ≥ 1, ∀j ∈ C,

xi ≥ yij ≥ 0, ∀i ∈ F , ∀j ∈ C.

(Static-URFL)

From Theorem 1, (Static-URFL) is equivalent to (LP-URFL). The number of
variables in (Static-URFL) is reduced to a polynomial number since the yij no
longer depend on the scenario S. The inner maximization problem is still taken
over an exponential number of scenarios; however we can separate efficiently over
these scenarios and write an efficient compact LP formulation for (Static-URFL):

max
S∈Ck

{
∑

i∈F

∑

j∈C

1(j ∈ S) · dijyij} = max
h∈[0,1]|C|

{
∑

i∈F

∑

j∈C

dijyijhj |
∑

j∈C

hj ≤ k}

= min
µ,ω≥0

{kµ+
∑

j∈C

ωj | µ+ ωj ≥
∑

i∈F

dijyij , ∀j ∈ C},
(2)

where the first equality holds because the optimal solution of the right maxi-
mization problem occurs at the extreme points of the k-ones polytope, which
corresponds to the worst-case scenarios of Ck and the second equality follows
from strong duality. Therefore, by dropping the min and introducing µ and all
ωj as variables, we reformulate (Static-URFL) as the following linear program:
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min
∑

i∈F

cixi + kµ+
∑

j∈C

ωj

s.t. µ+ ωj ≥
∑

i∈F

dijyij , ∀j ∈ C,

∑

i∈F

yij ≥ 1, ∀j ∈ C,

xi ≥ yij , ∀i ∈ F , ∀j ∈ C,

xi ≥ 0, yij ≥ 0, ωj ≥ 0, µ ≥ 0, ∀i ∈ F , ∀j ∈ C.

(3)

Finally, we round the solution of (Static-URFL) to an integral solution for
(URFL) while losing only a constant factor. This can be done using prior work
on rounding techniques from the literature of deterministic facility location prob-
lems. In fact, the LP rounding technique in Shmoys et al. [18], which gives a 4-
approximation algorithm to the deterministic uncapacitated problem also gives a
4-approximation algorithm for (Static-URFL). The idea is to define a ball around
each client of radius equal to the fractional assignment cost of the client (which
is independent of any scenario for our static policy). Then, we open facilities in
non-intersecting balls of ascending radius. The result is given in the following
theorem and for completeness, the details of the rounding are in Appendix A.

Theorem 3. (Static-URFL) can be rounded to give a 4-approximation to (URFL).

We would like to note that the focus in this section is not about finding the
best constant approximation for (URFL), but we introduce it as a warm-up for
motivating the static assignment policy before presenting our main result in the
next section.

3 Soft-capacitated robust facility location

3.1 Problem formulation

In this section, we consider the soft-capacitated robust facility location (SCRFL)
which is similar to (URFL) except that each facility i incurs a linear supply cost,
where ci is the cost per unit of supply. We refer to xi as the supply (or capacity)
in facility i. Each client in the realized scenario needs to be satisfied by one unit
of supply. The problem is called soft-capacitated since there is no upper bound
on xi, (xi ∈ Z+). The problem is given by the following integer program:

min
∑

i∈F

cixi + max
S∈Ck

∑

i∈F

∑

j∈S

dijy
S
ij

s.t.
∑

i∈F

ySij ≥ 1, ∀S ∈ Ck, ∀j ∈ S,

xi ≥
∑

j∈S

ySij , ∀i ∈ F , ∀S ∈ Ck, ∀j ∈ S,

xi ∈ N, ySij ≥ 0, ∀i ∈ F , ∀S ∈ Ck, ∀j ∈ S.

(SCRFL)
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We let (LP-SCRFL) denote the linear relaxation of (SCRFL), where we replace
xi ∈ N by xi ≥ 0, for each i ∈ F . We would like to note that even the linear
relaxation (LP-SCRFL) is challenging to solve since it has exponentially-many
variables (scenarios). Unlike the uncapacitated case, the static assignment policy
(1) is not optimal for (LP-SCRFL) and the optimal assignment for each client
depends, in general, on the realized scenario. In particular, the same client could
be assigned to different facilities in different scenarios. In contrast, we show
the surprising result that a static assignment policy gives O(log k/ log log k)-
approximation to (LP-SCRFL). Moreover, we can round the solution of the static
assignment policy to an integral solution for (SCRFL) and only lose an additional
constant factor. We let (Static-SCRFL) denote the problem when we restrict the
second-stage variables ySij in (LP-SCRFL) to static assignment policies (1). The
problem can then be reformulated as follows:

min
∑

i∈F

cixi + max
S∈Ck

∑

i∈F

∑

j∈C

1(j ∈ S) · dijyij

s.t.
∑

i∈F

yij ≥ 1, ∀j ∈ C,

xi ≥ max
S∈Ck

∑

j∈C

1(j ∈ S) · yij , ∀i ∈ F ,

xi ≥ 0, yij ≥ 0, ∀i ∈ F , ∀j ∈ C.

(Static-SCRFL)

3.2 An O( log k
log log k )-approximation algorithm

Our main contribution in this section is to show that a static assignment pol-
icy (1) gives O(log k/ log log k)-approximation for (LP-SCRFL) (Theorem 2). To
prove this theorem, we consider an optimal solution of (LP-SCRFL) and massage
it to construct a solution of the form (1) while losing O(log k/ log log k) factor.
We first present our construction and several structural lemmas and then give
the proof of Theorem 2.

Our construction. Let x∗ : (x∗
i )i∈F be an optimal first-stage solution of (LP-

SCRFL), let OPT1 be the corresponding optimal first-stage cost and let OPT2

be the corresponding optimal second-stage cost. We will classify the clients C
into three subsets C1, C2, C3 using Procedure 1 (below) and then specify a static
assignment policy for each subset. We use the following notation in the proce-
dure. Let α > 1 and r = 5 ·OPT2/k. For ℓ ≥ 1 and j ∈ C, we let Bℓ

j denote the
ball centered at client j of radius ℓr. We initialize the sets F ← F and C ← C
and update them at iteration, as explained in the procedure, until C becomes
empty. We let Cl(B) denote the set of clients in C that are inside the ball B
and let Sp(B) denote the total optimal supply of facilities F that are inside the
ball B, i.e.,

Sp(B) =
∑

i∈F

1(i ∈ B) · x∗
i and Cl(B) = {j ∈ C | j ∈ B}.
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Procedure 1

1: Initialize C ← C, C1 ← ∅, C2 ← ∅, C3 ← ∅, F ← F .
2: while C 6= ∅ do

3: Pick a client j ∈ C. Initialize ℓ = 1
4: if |Cl(B2ℓ−1

j )| ≥ k then

5: C1 ← C1 ∪ Cl(B2ℓ−1

j ), C ← C \ Cl(B2ℓ−1

j )
6: Stop, return to line 2

7: if Sp(B2ℓ
j ) < 1

2
· |Cl(B2ℓ−1

j )| then

8: C2 ← C2 ∪ Cl(B2ℓ−1

j ), C ← C \ Cl(B2ℓ−1

j )
9: Stop, return to line 2

10: if Sp(B2ℓ
j ) ≥ 1

2α
· |Cl(B2ℓ+1

j )| then

11: C3 ← C3 ∪ Cl(B2ℓ+1

j ), C ← C \ Cl(B2ℓ+1

j ),

12: F ← F \ {i ∈ F | i ∈ B2ℓ
j }

13: Stop, return to line 2
14: else ℓ← ℓ+ 1, return to line 4.

Note that both Sp(B) and Cl(B) depend on the current sets of facilities F and
clients C, which we update at each iteration of the while loop in the procedure.
But for the ease of notation, we do not refer to them with the indices F and C.

In the procedure, while the set C is not empty, we pick a client j ∈ C and
grow three balls around it: B2ℓ−1

j (internal ball), B2ℓ
j (medium ball) and B2ℓ+1

j

(external ball) starting with ℓ = 1. For each ℓ, we check if the number of clients
in the internal ball B2ℓ−1

j is greater than k (line 4); if this is the case, we remove
them from C, put them in C1 and restart in line 2. If not, we check if the supply
in the medium ball B2ℓ

j is sufficient to satisfy half of the clients in the internal

ball B2ℓ−1
j (line 7); if that is not the case, we remove those clients from C, put

them in C2, and restart in line 2. Otherwise, we finally check if the supply in the
the medium ball B2ℓ

j is sufficient to satisfy a fraction 1/2α of the clients in the

external ball B2ℓ+1
j (line 10); if that is the case we remove all the clients in B2ℓ+1

j

and put them in C3, we also remove all the facilities in B2ℓ
j and restart in line

2. If none of these three conditions holds, we increase ℓ to ℓ+ 1. First, we show
that after at most logα k increments (i.e., ℓ ≤ logα k), one of three conditions
must hold and therefore we will remove some clients from C and restart in line 2.
Which implies that after a finite number of iterations, the set C becomes empty.
In particular, We have the following lemma.

Lemma 1. In Procedure 1, after a finite number of iterations, the set C becomes

empty and C1 ∪ C2 ∪ C3 is equal to C. Moreover, ℓ is always less than logα k.

Proof. Fix a client j and let ℓ ≥ 1. If none of the three conditions (“if” state-
ments) holds then

α · |Cl(B2ℓ−1
j )| ≤ 2α · Sp(B2ℓ

j ) < |Cl(B2ℓ+1
j )|.
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Therefore, the number of clients grows geometrically when we increase the radius
of the balls and by induction, we have that

αℓ ≤ αℓ · |Cl(B1
j )| < |Cl(B2ℓ+1

j )|,

where |Cl(B1
j )| ≥ 1, since Cl(B1

j ) contains at least the client j. Hence, after
at most logα k increments, we will reach k clients, and must stop by the first
condition, and return to line 2. Hence, we always have ℓ ≤ logα k. Finally since,
we remove at least one client at each iteration of the while loop, the set C
becomes empty after at most |C| iterations, and finally C1 ∪ C2 ∪ C3 = C. ⊓⊔

Now we are ready to present our static assignment policy for (LP-SCRFL).
The following three lemmas show our constructed static assignment for each
client in the three subsets C1, C2, C3. Moreover, we specify the supply used to
satisfy each subset of these clients and present the analysis for the assignment
cost.

For each client in the set C1, we know that it belongs to a ball with at least
k clients. By the feasibility of the optimal solution, this implies that there exists
k units of supply in x

∗ “close” to this ball. Hence, we satisfy this client by using
the same fraction 1/k of x∗ (static assignment) while paying a small assignment
cost (roughly a constant times the radius of the ball). Since, there are at most k
clients in each scenario, and each one is using at most x∗/k, we need to dedicate
only one x

∗ for all clients in C1. Formally, we have the following lemma.

Lemma 2. There exists a static assignment policy for C1 such that each client

in C1 is using at most the supply x
∗/k and has an assignment cost less than

O(logα k/k) ·OPT2, i.e., there exists (ỹij)i∈F ,j∈C1
such that for each j ∈ C1 :

∑

i∈F

ỹij ≥ 1,
x∗
i

k
≥ ỹij ≥ 0, ∀i ∈ F , and

∑

i∈F

dij ỹij = O(logα k) ·
OPT2

k
.

Proof. Let j be a client of C1. It is sufficient to show that the following mini-
mization problem is feasible and its optimal cost is O(logα k/k) ·OPT2. Consider

min

{

∑

i∈F

dijyij

∣

∣

∣

∣

∑

i∈F

yij ≥ 1,
x∗
i

k
≥ yij ≥ 0, ∀i ∈ F

}

. (4)

Problem (4) must be feasible since the total supply in x
∗ is greater than the

total demand in any scenario, i.e.,
∑

i∈F x∗
i ≥ k. Recall that a client j in C1

belongs to one of the sets Cl(B2ℓ−1
t ) for some t ∈ C and ℓ ≤ logα k (Lemma

1) such that |Cl(B2ℓ−1
t )| ≥ k. Consider a scenario S formed by k clients from

Cl(B2ℓ−1
t ). Let denote y

S the assignment of scenario S in the optimal solution.
Consider the following candidate solution for (4):

yij =
1

k
·
∑

p∈S

ySip, ∀i ∈ F .
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We have, by the feasibility of the optimal solution, for each i ∈ F , 0 ≤ yij ≤
1
kx

∗
i

and
∑

i∈F

yij =
1

k
·
∑

i∈F

∑

p∈S

ySip ≥
1

k

∑

p∈S

1 = 1.

Therefore, our solution is feasible for (4). Moreover, we have

∑

i∈F

dijyij =
1

k
·
∑

i∈F

∑

p∈S

dijy
S
ip

≤
1

k
·
∑

i∈F

∑

p∈S

dipy
S
ip +

1

k
·
∑

p∈S

dpj

≤
1

k
·OPT2 + 2(2ℓ− 1)r

≤
OPT2

k
+ 2(2 logα k − 1) · 5 ·

OPT2

k
= O(logα k) ·

OPT2

k
,

where the first inequality follows from the triangle inequality and the fact that
∑

i∈F ySip = 1 for all p ∈ S in the optimal solution. For the second inequality,
we use the definition of OPT2 to bound the first term, the second term dpj is
bounded by the diameter of the ball B2ℓ−1

j which contains client j and all clients
p ∈ S. ⊓⊔

Now, consider the set C2. By construction, these are clients such that there
is not enough supply within a distance r = 5OPT2/k to satisfy half of them.
Therefore, intuitively they need to pay “large” distances in the optimal assign-
ment cost if they show up all together in the same scenario. In the following
lemma, we show that we can have no more than k of these clients. As we would
show later, this would imply that we can dedicate a supply x

∗ to C2 and make
a static assignment of all the clients C2 to this x∗.

Lemma 3. The set C2 has at most k clients.

Proof. Suppose, for the sake of contradiction, that |C2| > k. Let G1, G2, . . . , GT

be the disjoint subsets of clients added at each iteration in the construction of
C2 in Procedure 1. In particular, C2 = G1 ∪G2 ∪ . . . ∪GT for some T where:

(i) for t = 1, 2, . . . , T, Gt = Cl(B2ℓt−1
jt

) for some client jt and 1 ≤ ℓt ≤ logα k.

(ii) the supply Sp(B2ℓt
jt

) is less than half of the clients in Gt.
(iii) each set Gt has strictly less than k clients, since the procedure has to fail

the first “if” statement before adding Gt into C2.

Recall that
Sp(B2ℓt

jt
) =

∑

i∈F

1(i ∈ B2ℓt
jt

) · x∗
i ,

where F is the current set of facilities in the procedure (and is not all F since
some facilities have been removed in line 12 of the procedure). However, we
would like to emphasize that when a facility has been removed (in line 12 of the
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procedure), all clients within distance r from this facility were removed as well
(line 11). This is true, since when we remove the facilities in a medium ball, say
B2ℓ

j , (line 12), we remove all clients in the corresponding external ball B2ℓ+1
j

(line 11). Hence, the remaining clients in C are at least (2ℓ + 1)r − (2ℓ)r = r
away from the removed facilities. In particular, for the clients Gt, the supply that
has been removed before they were added to C2 is at least r away from them.
Therefore, all the facility in F that are within a distance r from a client in Gt

belong to the set F that verifies
∑

i∈F 1(i ∈ B2ℓt
jt

)·x∗
i ≤ 2 · |Gt|. This implies that

the supply of all facilities within a distance r from Gt in the optimal solution,
is less than half of the clients Gt. Hence, if all of the clients Gt show up in a
scenario, the optimal second-stage solution needs to pay an assignment cost of
at least r · |Gt|/2.

Order the sets Gt according to their cardinalities: wlog assume that |G1| ≥
|G2| ≥ . . . ≥ |GT |. We construct a scenario Ŝ by taking clients from the sets G1,
G2, . . . until we hit k. This is possible since by assumption |C2| > k. Assume
that

|G1|+ |G2|+ . . . |Gp−1|+ |Ḡp| = k,

for some p, where 2 ≤ p ≤ T . Note that Ḡp is a subset of Gp, since we can reach
k before taking all the clients of the last set Gp. For each t = 1, . . . , p − 1, the
optimal second-stage decision needs to pay at least r · |Gt|/2. Therefore,

OPT2 ≥
1

2
· r · (|G1|+ |G2|+ . . . |Gp−1|).

We did not include Gp, since not all these clients are necessary in the scenario

Ŝ, but only |Ḡp| of them. Since Ḡp has the smallest cardinality

|G1|+ |G2|+ . . . |Gp−1| ≥
1

2
(|G1|+ |G2|+ . . . |Gp−1|+ |Ḡp|) =

k

2
.

Therefore,

OPT2 ≥ r ·
k

4
= 5 ·

OPT2

4
,

which is a contradiction. Therefore, |C2| ≤ k. ⊓⊔

Finally, for clients C3, we show that there exists |C3|/2α units of supply
“close” to them. In particular, we can multiply these units by 2α, dedicate them
to C3 and make a static assignment for C3. We have the following lemma.

Lemma 4. There exists a supply x̂ that has a cost at most 2α ·OPT1 and there

exists a static assignment policy such that all clients in C3 are assigned to supply

x̂ and each client in C3 has an assignment cost that is O(logα k/k) ·OPT2, i.e.,

there exists (ŷij)i∈F ,j∈C3
and (x̂i)i∈F such that for all j ∈ C3 :

∑

i∈F

ŷij ≥ 1, x̂i ≥
∑

j∈C3

ŷij , ∀i ∈ F , x̂i ≥ 0, ŷij ≥ 0, ∀i ∈ F ,

∑

i∈F

cix̂i ≤ 2α ·OPT1 and
∑

i∈F

dij ŷij = O(logα k) ·
OPT2

k
.
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Proof. Let G1, G2, . . . , GT be the disjoint subsets of clients added at each itera-
tion to construct C3 in Procedure 1. In particular, C3 = G1 ∪G2 ∪ . . . ∪GT for
some T such that: for all t = 1, 2, . . . , T, Gt = Cl(B2ℓt+1

jt
) for some client jt and

some integer ℓt with 1 ≤ ℓt ≤ logα k. Moreover, the supply Sp(B2ℓt
jt

) is greater

than a 1/2α fraction of the clients in Gt. Hence, for each ball B2ℓt
jt

, we multiply
the supply by 2α, move it to the cheapest facility in this ball and make a static
assignment of all clients Gt to this cheapest facility. Since the supply in B2ℓt

jt
is

removed along with clients Gt, it will not be used by the other clients in C3.
Formally, let it be the cheapest facility in the ball B2ℓt

jt
. We define, for each

facility i in B2ℓt
jt

, x̂i = 2α
∑

i′∈F 1(i′ ∈ B2ℓt
jt

) · x∗
i′ if i = it and x̂i = 0 otherwise.

For each client j ∈ C3, we let ŷij = 1 for i = it and j ∈ Gt, and let ŷij = 0,
otherwise. Therefore, the first desired constraints in the lemma are verified. Let
us check the last one. The distance between a client and its assigned facility in
our solution is at most r plus the diameter of the ball B2ℓt

jt
, i.e.,

r + 4ℓtr ≤ (4 logα k + 1) · 5 ·OPT2/k = O(logα k/k) ·OPT2.

⊓⊔

Proof of Theorem 2. Let (ỹij)i∈F ,j∈C1
be the solution given in Lemma 2 for sat-

isfying the clients in C1. We dedicate a supply x
∗ to clients C1. Let (ŷij)i∈F ,j∈C3

and (x̂i)i∈F be the solution given in Lemma 4 for satisfying the clients in C3.
Finally, we know from Lemma 3 that C2 has at most k clients, and therefore C2

is a scenario. So we dedicate a supply x
∗ to C2 and let the optimal assignment

yC2

ij be our static assignment solution for C2. In particular, we give the following
solution to (LP-SCRFL), where the first stage solution is 2x∗ + x̂ and the static
assignment policy is for all i ∈ F : yij = ỹij for j ∈ C1, yij = yC2

ij for j ∈ C2, and
yij = ŷij for j ∈ C3. It is clear that

∑

i∈F yij ≥ 1, for each j in C1 ∪ C2 ∪ C3.

Moreover, for any scenario S ∈ Ck and i ∈ F ,
∑

j∈S

yij =
∑

j∈S∩C1

ỹij +
∑

j∈S∩C2

yC2

ij +
∑

j∈S∩C3

ŷij

≤
∑

j∈S∩C1

x∗
i

k
+ x∗

i + x̂i ≤ 2x∗
i + x̂i.

Therefore, our solution is feasible for (LP-SCRFL). Let us evaluate its cost. The
cost of the first stage is at most 2OPT1 + 2αOPT1 = O(α) · OPT1. For the
second-stage cost, consider any scenario S ∈ Ck, We have
∑

i∈F

∑

j∈S

dijyij =
∑

j∈S∩C1

∑

i∈F

dij ỹij +
∑

j∈S∩C2

∑

i∈F

dijy
C2

ij +
∑

j∈S∩C3

∑

i∈F

dij ŷij

≤
∑

j∈S∩C1

O(logα k) ·
OPT2

k
+OPT2 +

∑

j∈S∩C3

O(logα k) ·
OPT2

k

≤ O(logα k) ·OPT2 +OPT2 +O(logα k) ·OPT2

= O(logα k) ·OPT2.
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By balancing the terms α and logα k, we choose α = log k/ log log k which gives
O(log k/ log log k)-approximation to (LP-SCRFL). ⊓⊔

Similar to the uncapacitated problem, we can solve (Static-SCRFL) efficiently
using a compact linear program. In fact, we dualize the inner maximization
problem in the objective function of (Static-SCRFL) in the same way as (2). In
addition to that, we reformulate the second constraint in (Static-SCRFL) using
the same dualization technique as follows: for each i ∈ F ,

max
S∈Ck

{
∑

j∈S

yij} = max
h∈[0,1]|C|

{
∑

j∈C

yijhj |
∑

j∈C

hj ≤ k}

= min
ηi,λij≥0

{kηi +
∑

j∈C

λij | ηi + λij ≥ yij , ∀j ∈ C}.

The linear program is given by

min
∑

i∈F

cixi + kµ+
∑

j∈C

ωj

s.t. µ+ ωj ≥
∑

i∈F

dijyij , ∀j ∈ C,

∑

i∈F

yij ≥ 1, ∀j ∈ C,

xi ≥ kηi +
∑

j∈C

λij , ∀i ∈ F ,

ηi + λij ≥ yij , ∀i ∈ F , ∀j ∈ C,

xi, yij , λij , ηi, ωj , µ ≥ 0, ∀i ∈ F , ∀j ∈ C,

(5)

which can be reduced, after removing the variables yij , to

min
∑

i∈F

cixi + kµ+
∑

j∈C

ωj

s.t. µ+ ωj ≥
∑

i∈F

dij(ηi + λij), ∀j ∈ C,

∑

i∈F

ηi + λij ≥ 1, ∀j ∈ C,

xi ≥ kηi +
∑

j∈C

λij , ∀i ∈ F ,

xi, λij , ηi, ωj , µ ≥ 0, ∀i ∈ F , ∀j ∈ C.

(6)

Finally, we round the optimal solution of (Static-SCRFL) to an integral so-
lution using the filtering and rounding techniques from Shmoys et al. [18] while
losing only a factor of 12. Again, this rounding technique was designed for
the deterministic facility location problem, but the same argument works as
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well for (Static-SCRFL). Finally, since (Static-SCRFL) gives O(log k/ log log k)-
approximation to (LP-SCRFL) and we only loose a constant factor in the round-
ing, this results in O(log k/ log log k)- approximation algorithm for (SCRFL). We
state the result in the following theorem and, for completeness, we present the
details of the rounding in Appendix B.

Theorem 4. (Static-SCRFL) can be rounded to give O( log k
log log k )-approximation

algorithm to (SCRFL).

Note that after rounding the supply in our solution of (Static-SCRFL), the inte-
gral second-stage assignment for each realized scenario is a transportation prob-
lem and therefore its optimal solution is integral. We would like to emphasize
that while the fractional assignment in our solution is static, our integral assign-
ment is not necessarily static. In fact, a policy with an integral static assignment
could even be bad our model.

4 Conclusion.

In this paper, we give a O(log k/ log log k)-approximation for soft-capacitated ro-
bust facility location problems with an implicit model of demand uncertainty. It
is an interesting open question to study whether there exists a constant approx-
imation algorithm for the problem, even in special cases such as the Euclidean
metric. Our solution approach relies on static fractional assignment policies,
which we show are optimal for the uncapacitated problem and give a strong
theoretical guarantee for soft-capacitated case. Static assignment policies, while
reasonable for the case of soft-capacities can be shown to be arbitrarily bad for
the case of hard-capacities, where in addition to cost per unit, there is also an
upper bound on supply at each facility. It is another interesting open direction
to study any non-trivial approximation in this setting.
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A Rounding and proof of Theorem 3

Rounding (Shmoys et al.[18]). Recall that n is the number of facilities and
m is the number of clients. Let (x∗,y∗) =

(

(x∗
i )i∈F , (y

∗
ij)i∈F ,j∈C

)

be an opti-
mal solution for (Static-SCRFL). Let OPT1 and OPT2 respectively be the cor-
responding optimal first-stage and second-stage cost. In particular, OPT2 =
maxS∈Ck

∑

i∈F

∑

j∈C 1(j ∈ S) · dijy
∗
ij . For each client j ∈ C, let

Lj =
∑

i∈F

dijy
∗
ij .

We sort Lj in ascending order. Suppose without loss of generality, that L1 ≤
L2 ≤ . . . ≤ Lm. For each client j ∈ C, we consider Bj the ball centered at the
client j with radius αLj (where α ≥ 1 will be defined later). We choose greedily
the non-intersecting balls in ascending order of Lj and open the cheapest facility
in each selected ball. That is, we consider every client in this sorted order, and
only include its ball if it does not intersect any previously selected ball. Each
client is assigned to its closest opened facility. For each client j ∈ C,

Lj ≥
∑

i/∈Bj

dijy
∗
ij ≥

∑

i/∈Bj

αLjy
∗
ij .

Hence,
1

α
≥

∑

i/∈Bj

y∗ij ,

which implies
∑

i∈Bj

y∗ij ≥ 1−
1

α
.

Therefore,
∑

i∈Bj

x∗
i ≥ 1−

1

α
.

By summing over the non-intersecting balls, the cost of our opened facilities is
less than 1

1− 1

α

OPT1. Now let us consider the assignment cost. For client j, if its

ball Bj is chosen by the greedy procedure above, then the client is assigned to
the opened facility i in Bj and dij ≤ αLj . If not, the client j is assigned to a
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facility i no further away than the one chosen in the ball Bk that intersected Bj .
By the triangle inequality:

dij ≤ div + djv ≤ αLj + 2αLk ≤ 3αLj,

where v ∈ Bj ∩ Bk and Lk ≤ Lj. Hence, for any scenario S ∈ Ck, the second-
stage cost is at most 3α ·

∑

j∈S Lj, which is at most 3α ·OPT2 . By optimizing

over α, we take α = 4
3 , which results in the 4-approximation with respect to

OPT1 + OPT2. Moreover, since (Static-URFL) is equivalent to (LP-URFL) and
(LP-URFL) is a relaxation of (URFL), the rounding above gives 4-approximation
algorithm for (URFL).

B Rounding and proof of Theorem 4

Rounding (Shmoys et al.[18]). Let (x∗,y∗) =
(

(x∗
i )i∈F , (y

∗
ij)i∈F ,j∈C

)

be an
optimal solution of (Static-SCRFL). Let z = maxS∈Ck

∑

i∈F ,j∈S dijy
∗
ij and set

α ∈ (0, 1). For each client j ∈ C, let π be a permutation of facilities that serve
j in the optimal solution of (Static-SCRFL) such that dπ(1)j ≤ dπ(2)j ≤ . . . ≤

dπ(n)j . Define the radius dj(α) = dπ(i∗)j where i∗ = min{i′ |
∑i′

i=1 y
∗
π(i)j ≥ α}.

Following the same definitions in Shmoys el al. [18], we say that a solution (x,y)
is g-close if for any j ∈ C, yij > 0 implies that dij ≤ gj .

Claim. Given a feasible solution (x,y), we can construct a g-close feasible so-
lution (x̄, ȳ) such that x̄ = 1

αx, z̄ = 1
αz and gj ≤ dj(α), ∀j ∈ C where

z̄ = maxS∈Ck

∑

i∈F ,j∈S dij ȳij .

Proof. In fact, for each j, we set ȳπ(i)j = yπ(i)j/α for 1 ≤ i ≤ i∗ and ȳπ(i)j = 0
otherwise. We have

∑

i∈F

ȳij =

i∗
∑

i=1

1

α
yπ(i)j ≥ 1.

The second constraint in (Static-SCRFL) is trivially verified since x is multiplied
by 1

α and yij are either multiplied by 1
α or set to 0. Moreover, all edges in our

solution with a positive flow have a cost at most dj(α). Hence, (x̄, ȳ) is g-close
with gj ≤ dj(α) for all j. ⊓⊔

Let (x̄, ȳ) be the g-close solution corresponding to the optimal solution
(x∗,y∗). For the ease of notation, we just use the notation (x,y) instead of
(x̄, ȳ) in the rest of the proof. We round-up all xi ≥

1
2 to ⌈xi⌉. We pay at most a

factor 2 in the first-stage cost. Let us focus on the remaining fractional facilities,
say F̂ , i.e.,

F̂ = {i ∈ F | 0 < xi < 1/2}.

We let Ĉ denote the set of clients such that half of their supply is coming from
F̂ , i.e.,

Ĉ = {j ∈ C |
∑

i∈F̂

yij ≥
1

2
}.
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We sort the clients in Ĉ in ascending order of gj and do the following until Ĉ

becomes empty. We take the client j with the smallest gj in Ĉ, let say j′. Let

V = {i ∈ F̂ : yij′ > 0},

and
T = {j ∈ C : ∃i ∈ V s.t. yij > 0}.

We put the ⌈
∑

i∈V xi⌉ units of supply in the cheapest facility in V which we
denote fc. We set each xi in V \ {fc} to 0. The clients in T are the ones affected
by this change. We will route all of their demand from V to fc and make this
assignment static. Note that, at this step, we have routed only their demand
from V and not their entire demand. This is feasible because

⌈
∑

i∈V

xi⌉ ≥
∑

i∈V

xi ≥
∑

j∈C

1(j ∈ S) ·
∑

i∈V

yij

for any scenario S. Since we choose the clients in Ĉ in ascending order of gj , the
triangle inequality ensures that the solution is 3g-close. We keep doing this until
Ĉ becomes empty.

Let us analyze the final cost. We lost a factor 1
α in both first-stage and

second-stage cost. Then, we lost a factor 2 in the first-stage cost by rounding up
the solution and moving the supply to the cheapest facilities after each rounding.
We lost another factor 2 in the first stage to satisfy C \ Ĉ. For the second stage,
we have a solution that is 3g-close with gj ≤ dj(α). Note that

dj(α) ≤
1

1− α

∑

i∈F

dijyij .

In particular, for any scenario S,

∑

j∈S

gj ≤
1

1− α

∑

j∈S

∑

i∈F

dijyij .

Hence, we loose 3
1−α in the second stage. Overall, the factor is

4

α
OPT1 +

3

α(1− α)
OPT2.

We set α = 1
2 , which gives 12 approximation to (LP-SCRFL). Finally, since

(Static-SCRFL) gives O(log k/ log log k)-approximation to (LP-SCRFL) and (LP-
SCRFL) is a relaxation of (SCRFL), this results inO(log k/ log log k)-approximation
algorithm for (SCRFL).
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