
Noname manuscript No.
(will be inserted by the editor)

A New Integer Programming Formulation of the
Graphical Traveling Salesman Problem

Robert D. Carr · Neil Simonetti

Received: date / Accepted: date

Abstract In the Traveling Salesman Problem (TSP), a salesman wants to
visit a set of cities and return home. There is a cost cij of traveling from city
i to city j, which is the same in either direction for the Symmetric TSP. The
objective is to visit each city exactly once, minimizing total travel costs. In the
Graphical TSP, a city may be visited more than once, which may be necessary
on a sparse graph. We present a new integer programming formulation for
the Graphical TSP requiring only two classes of constraints that are either
polynomial in number or polynomially separable, while addressing an open
question proposed by Denis Naddef.

Keywords Linear Program · Relaxation · TSP · Traveling Salesman
Problem · GTSP · Graphical Traveling Salesman Problem

1 Introduction

The Traveling Salesman Problem (TSP), is one of the most studied problems
in combinatorial optimization [9] [10]. In its classic form, a salesman wants
to visit each of a set of cities exactly once and return home while minimizing
travel costs. Costs of traveling between cities are stored in a matrix where
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entry cij indicates the cost of traveling from city i to city j. Units may be
distance, time, money, etc.

If the underlying graph for the TSP is sparse, a complete cost matrix can
still be constructed by setting cij equal to the shortest path between city i and
city j for each pair of cities. However, this has the disadvantage of turning a
sparse graph G = (V,E) where the edge set E could be of size O(|V |) into a
complete graph G′ = (V,E′), where the edge set E′ is O(|V |2).

Ratliff and Rosenthal were the first to consider a case where the edge set
is not expanded to a complete graph, but left sparse, [17], while soon after,
Fleischmann [8] and Cornuéjols, Fonlupt, and Naddef [5] examined this in a
more general case, the latter giving this its name: the Graphical Traveling
Salesman Problem (GTSP). As a consequence, a city may be visited more
than once, since there is no guarantee the underlying graph will be Hamilto-
nian. While the works of Fleischmann and Cornuéjols et al. focused on cutting
planes and facet-defining inequalities, this paper will look at a new compact
formulation that can improve on the integrality gap created when solving a
linear programming relaxation of the problem.

2 Basic Formulations

This paper will investigate the symmetric GTSP, where the cost of travel-
ing between two cities is the same, regardless of direction, which allows the
following notation to be used:

G = (V,E) : The graph G with vertex set V and edge set E.
ce : The cost of using edge e, replaces cij .
xe : The variable indicating the use of edge e, replaces xij which

is used in most general TSP formulations.
δ(v) : The set of edges incident to vertex v.
δ(S) : The set of edges with exactly one endpoint in vertex set S.
x(F ) : The sum of variables xe for all e ∈ F ⊂ E.

If given a formulation on a complete graph Kn, a formulation for a sparse
graph G can be created by simply setting xe = 0 for any edge e in the graph
Kn but not in the graph G.

2.1 Symmetric TSP

The standard formulation for the TSP, attributed to Dantzig, Fulkerson, and
Johnson [6], contains constraints that guarantee the degree of each node in
a solution is exactly two (degree constraints) and constraints that prevent a
solution from being a collection of disconnected subtours (subtour elimination
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constraints).

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(v)
xe = 2 ∀v ∈ V∑

e∈δ(S)
xe ≥ 2 ∀S ⊂ V. S 6= ∅

xe ∈ {0, 1} ∀e ∈ E.

When this integer program is relaxed, the integer constraints xe ∈ {0, 1} are
replaced by the boundary constraints 0 ≤ xe ≤ 1.

It should also be noted that while the subtour elimination constraints are
only needed for the cases where 3 ≤ |S| ≤ |V |

2 , there are still exponentially
many of these constraints. Using a similar technique to Martin [14], which was
directly applied to the TSP by Carr and Lancia [1], these constraints can be
replaced by a polynomial number of flow constraints which ensure the solution
is a 2 edge-connected graph.

2.2 Symmetric GTSP

This formulation for the Graphical TSP comes from Cornuéjols, Fonlupt, and
Naddef [5], and differs from the formulation above by allowing the degree of
a node to be any even integer, and by removing any upper bound on the
variables.

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(v)
xe is positive and even ∀v ∈ V∑

e∈δ(S)
xe ≥ 2 ∀S ⊂ V, S 6= ∅

xe ≥ 0 ∀e ∈ E.
xe is integer ∀e ∈ E.

When this program is relaxed, the integer constraints at the end are removed,
and the disjunctive constraints that require the degree of each node to be any
positive and even integer are effectively replaced by a lower bound of two on
the degree of each node.

The disjunctive constraints for the formuation above are unusual for two
reasons. Firstly, in most mixed-integer programs, only variables are constrained
to be integers, not sums of variables found in constraints. Secondly, the sum is
required not to be just integer, but an even integer. In terms of a mixed-integer
formulation, the second perculiarity could be addressed with:∑

e∈δ(v)

xe

2 ∈ Z ∀v ∈ V

To our knowledge, no other integer programming formulation for a graph
theory application uses constraints of this kind. (Even the constraints for the



4 Robert D. Carr, Neil Simonetti

common T-join problem are different than what we are proposing here, which
will be discussed at the end of the paper.)

Addressing the first peculiarity, that integer and mixed-integer programs
only allow integrality of variables, we could set these sums to new variables
indexed on the vertices of the graph, dv.∑

e∈δ(v)

xe

2 = dv ∀v ∈ V

dv ∈ Z ∀v ∈ V
While this approach works, it feels unsatisfying. The addition of these dv

variables is purely cosmetic. When solving the relaxation, there is nothing
preventing us from waiting until a solution is generated before defining the
values of dv using the sums above. Thus the new variables do not facilitate the
addition of any new constraints, and do nothing to strengthn the LP relaxation
in any way.

When solving the integer program, we can bypass the dv variables by
branching with constraints based on the degree sums. For example, if the
solution from a relaxation creates a graph where node i has odd degree q, we
branch with constraints of the form:∑

e∈δ(i)
xe ≤ q − 1

and ∑
e∈δ(i)

xe ≥ q + 1

At a conference, Denis Naddef proposed a challenge of finding a set of con-
straints for a mixed-integer formulation of GTSP, where integrality constraints
are limited to only xe ∈ Z [15]. We will address the state of this challenge in
section 4.

3 New Constraints

Cornuéjols et al. proved that an upper bound of two on each xe is implied if
all the edge costs are positive [5] (and also note that without this additional
bound, graphs with negative weight edges would not have finite optimal solu-
tions). This fact allows us to dissect the variables xe into two components ye
and ze such that, for each edge e ∈ E:

ye = 1 if edge e is used exactly once, ye = 0 otherwise
ze = 1 if edge e is used exactly twice, ze = 0 otherwise

Note that
xe = ye + 2ze (1)

Additionally, we can add the constraint ye + ze ≤ 1 for each edge e ∈ E,
since using both would imply an edge being used three times in a solution. But
more importantly, we now have a way to enforce even degree without using
disjunctions, since only the ye variables matter in determining if the degree of
a node is odd or even.
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3.1 Enforcing even degree without disjunctions

Since the upper bound on the ye variables is one, the following constraints will
enforce even degree:∑

e∈F
(1− ye) +

∑
e∈δ(v)\F

ye ≥ 1 ∀v ∈ V and F ⊂ δ(v) with |F | odd. (2)

This type of constraint was used by Yannakakis et al. [18] and Lancia et
al. [12] when working with the parity polytope.

Note that for integer values of ye, if the y-degree of a node v is odd, then
when F is the set of nodes adjacent to v indicated by y, the expression in the
left-hand side of the constraint above will be zero. If the y-degree of a node v
is even, then for any set F with |F | odd, the left-hand side must be at least
one.

For sparse graphs, this adds at most O(|V |2∆−1) constraints, where ∆
is the maximum degree in G. Typical graphs from roadmaps usually have
4 ≤ ∆ ≤ 6, while graphs from highway maps might have 5 ≤ ∆ ≤ 8. Also note
that Euler’s formula for planar graphs guarantees that |E| ≤ 3|V | − 6, and so
the average degree of a node in a planar graph cannot be more than six.

Unfortunately, in the relaxation of the linear program with these con-
straints, odd degree nodes can still result from allowing a path of nodes where,
for each edge e in the path, ye = 0 and ze = 1

2 . See figure 1.

ye = 1 and ze = 0

ye = 0 and ze = 1
2

Fig. 1 A path where ye = 0 and ze = 1
2

3.2 Spanning Tree Constraints

One method to discourage this half-z path is to require the edges indicated
by y and z contain a spanning tree. This is different than demanding that
x contains a spanning tree since each unit of ze contributes two units to xe.
For the spanning tree constraint, each ze contributes only one unit toward
a spanning tree, which means that for any node whose y-degree is zero, the
z-degree must be at least one, and in the case where two nodes with y-degree
zero are connected using an edge in the spanning tree, the z-degree of one of
those nodes must be at least two, which effectively prevents this half-z path.

Place constraints on binary variables t such that the edges where te = 1
indicate a tree that spans all nodes of G (the graph must be connected and
contain no cycles). This is done by the well-known partition inequalities that
will be discussed in section 4. As with the subtour elimination constraints,
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Martin describes a compact set of constraints that ensure t indicates a tree
(or a convex combination of trees) [14]. Then, add the constraint:

te ≤ ye + ze, ∀e ∈ E (3)

Only the connectedness of the graph indicated by te is important, since the
constraint only requires that y+z dominate a spanning tree, so the constraints
that would prevent cycles are unnecessary.

This constraint is valid since any tour that visits every node has within it
a spanning tree that touches each node.

4 A New Mixed IP Formulation

4.1 Proving the Formulation

The tree constraints are sufficient, when combined with constraint (2) and
integrality constraints ye ∈ {0, 1}, to find an optimal integer solution value,
making the subtour elimination constraints unnecessary. The following new
mixed integer programming formulation therefore does not include these op-
tional constraints. Note that all GTSP tours will satisfy the constraints in this
formulation. The notation δ(V1, ..., Vk) refers to the set of edges with endpoints
in different vertex sets.

minimize
∑
e∈E

cexe

subject to xe = ye + 2ze ∀e ∈ E (4.1)∑
e∈F

1− ye +
∑

e∈δ(v)\F
ye ≥ 1 ∀v ∈ V and F ⊂ δ(v) with |F | odd (4.2)∑

e∈δ(V1,...,Vk)

te ≥ k − 1 ∀ partitions V1, ..., Vk of V (4.3)

te ≤ ye + ze ≤ 1 ∀e ∈ E (4.4)
0 ≤ te ≤ 1 ∀e ∈ E (4.5)
0 ≤ ze ≤ 1 ∀e ∈ E (4.6)
ye ∈ {0, 1} ∀e ∈ E (4.7)

Theorem 1 Given a MIP solution (y∗, z∗) to the GTSP formulation above,
then x∗ = y∗ +2z∗ will indicate an edge set that is an Euler tour, or a convex
combination of Euler tours.

Proof . It should be noted that it is sufficient for the MIP solultion to
dominate an Euler tour (or a convex combination of them), since if there is
some edge e where x∗e is larger than necessary by ε units (for some 0 < ε ≤
x∗e ≤ 2), one can add edge e twice to a collection of Euler tours with total
weight ε

2 .
Let (y∗, z∗) be a feasible solution to the GTSP formulation specified. By

constraints (4.3) and (4.4), we know that y∗ + z∗ dominates a convex com-
bination of spanning trees, thus we have y∗ + z∗ ≥

∑
i λiT

i, where each T i

is an edge incidence vector of a spanning tree. Define Ri by Rie = 1 if both



A New IP Formulation of Graphical TSP 7

T ie = 1 and y∗e = 0, and Rie = 0 otherwise. So Ri becomes the remnant of tree
T i when edges indicated by y∗ are removed. Since y∗ only contains integer
values, the constraint ye + ze ≤ 1 guarantees that ze = 0 whenever ye = 1,
and guarantees ye = 0 whenever ze > 0. This means that for all edges where
ye = 0, we have z∗ ≥

∑
i λiT

i =
∑
i λiR

i. Since Ri is the result of removing
edges from T i where ye = 1, we are guaranteed that Rie = 0 for every i where
ye = 1, and thus z∗ ≥

∑
i λiR

i over all edges.

Hence, x∗ = y∗ + 2z∗ ≥ y∗ + 2
∑
i λiR

i =
∑
i λi(y

∗ + 2Ri), where for
each i, y∗ + 2Ri is an Euler tour, because constraint (4.2) ensures the graph
indicated by y∗ + 2Ri will have even degree at every node, and constraints
(4.3) and (4.4) ensure the graph indicated by y∗ +Ri, and thus y∗ + 2Ri, is
connected. ut

Constraints (4.3) are exponential in number, but these can also be reduced
to a compact set of constraints using the techniques from Martin [14]. The
constraints we used are below, and require a model using directed edges to
regulate flow variables φ. Assume V = {1, 2, ..., n} and designate city n as the
home city.

In Martins formulation, we use directed flow variables φk that carry one
unit of flow from any node with index higher than k to node k and supported by
the values

−→
t ij as edge capacities. From any feasible integral solution (directed

spanning tree), it is not hard to derive such a set of unit flows by directing
the tree from the home node n. For this flow, we can now set flow going
into any nodej with j > k to zero in flow problem φk , and flow balancing
constraints among the nodes numbered k + 1 or higher are also unnecessary.
Finally, te =

−→
t ij +

−→
t ji to create variables for the undirected spanning tree.

φki,j = 0 ∀j ∈ V, k ∈ V \ {n} with j > k, {i, j} ∈ E
φkk,i = 0 ∀k ∈ V \ {n}, {i, k} ∈ E∑

i∈δ(k)
φki,k = 1 ∀k ∈ V \ {n}∑

i∈δ(j)
φki,j −

∑
i∈δ(j)

φkj,i = 0 ∀j ∈ V, k ∈ V \ {n} with j < k

0 ≤ φki,j ≤
−→
t ij ∀k ∈ V \ {n}, {i, j} ∈ E

te =
−→
t ij +

−→
t ji ∀e = {i, j} ∈ E∑

e∈E
te ≤ n− 1

te ≤ ye + ze ∀e ∈ E

Constraints (4.2) are exponential in ∆, the maximum degree of the graph,
which is not a concern if the graph is sparse, leading to a compact formulation.
If the graph is not sparse, identifying when a constraint from the set (4.2) is
violated, a process called separation, can be done quickly and efficiently, even
if the solution is from a relaxation and thus contains fractional values for some
ye variables.
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Theorem 2 Given a solution to the relaxation of the GTSP formulation above
without constraints (4.2), if a constraint from (4.2) is violated, it can be found
in O(|V |2) time.

Proof . For each node v ∈ V , minimize the left-hand side of constraint
(4.2) over all possible sets F ⊂ δ(v) (|F | even or odd), by placing edges with
ye >

1
2 in F and leaving edges with ye <

1
2 for δ(v) \ F . Edges with ye = 1

2
could go in either set.

– If this minimum is not less than 1, no constraint from (4.2) will be violated
for this node.

– If the minimum is less than 1, and |F | is odd, this is a violated constraint
from (4.2).

– If the minimum is less than 1, and |F | is even, find the edge e where |ye− 1
2 |

is smallest. Then flip the status of the membership of edge e in F . This
will create the minimum left-hand side over all sets F with |F | odd.

For each node, this requires summing or searching items indexed by δ(v)
a constant number of times, and since |δ(v)| < |V | this requires O(|V |2) time.

ut

4.2 Addressing the Naddef Challenge

We would have preferred to simply require the values in x to be integer and
allow y and z to hold fractional values, which addresses the challenge that
Denis Naddef proposed [15]. He wished to know if one could find a simple
formulation for the GTSP that finds optimal solutions by only requiring inte-
grality of the decision variables x∗, and nothing else. But this cannot be done
(for polynomially-sized or polynomially-separable classes of inequalities unless
P = NP ), which can be seen by the folowing theorem.

Theorem 3 Let G be a 3-regular graph, and let G′ be the result of adding one
vertex to the middle of each edge in G. Consider a solution x∗, where x∗e = 1
for each edge e ∈ G′. Then x∗ is in the GTSP polytope iff G is Hamiltonian.

In this proof, define x∗(S) =
∑
e∈S x

∗
e.

Proof . If G is Hamiltonian, let P be the set of edges in a Hamilton cycle
of G, and let P ′ be the set of corresponding edges in the graph G′. Note that
in G′ every degree-two node is adjacent to two degree-three nodes, and that
the cycle P ′ reaches every degree-three node in G′. One GTSP tour in G′ can
be created by adding an edge of weight two on exactly one of the two edges
adjacent to each degree-two node in G′ but not used in P ′. The other GTSP
tour can be created by adding an edge of weight two on the edges not chosen
by the first tour. The convex combination of each of these tours with weight
1
2 will create a solution where x∗e = 1 for each edge e ∈ G′

Now suppose we have a solution x∗, where x∗e = 1 for each edge e ∈ G′ and
x∗ is in the GTSP polytope. Express x∗ =

∑
k λkχ

k as a convex combination
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of GTSP tours. Consider any degree-two vertex v in G′. Since v has degree
two, x∗(δ(v)) = 2. Also χk(δ(v)) ≥ 2 must be true for any GTSP tour χk,
and so, by the convex combination, it must be that χk(δ(v)) = 2 for each
χk. If the neighbors of v are nodes i and j, then χk(δ(v)) = 2 implies either
χki,v = 1 and χkj,v = 1, or χki,v = 2 and χkj,v = 0, or χki,v = 0 and χkj,v = 2.

The edges of weight one in χk form disjoint cycles, so pick one such cycle C,
and let S1 be the set of vertices in C. (If there are no edges of weight one in
χk, let S1 be a set containing any single degree three vertex.) Let S2 be the
set of degree two vertices v such that χki,v = 2 for some i ∈ S1. Notice that

χk(δ(S1 ∪ S2)) = 0, since the degree of any node, v ∈ S2 is exactly two in
χk, and the edge connecting v to S1 has weight two. χk is a tour and thus
must be connected, which is only possible if S1 ∪ S2 is the entire vertex set of
G′, and therefore the cycle C must visit every degree three node in G′. The
corresponding cycle in the graph G would therefore be a Hamilton cycle. ut

If one knew when the integer solution x∗ were in the GTSP polytope,
then this theorem would imply a polynomial time algorithm to determine if a
3-regular graph is Hamiltonian, which is an NP -complete problem.

The challenge that Naddef proposed never specifically defined what makes
a formulation simple. Certainly having all constraint sets be polynomially-sized
or polynomially-separable (in terms of n, the number of nodes) would qualify
as simple, but there may be other normal sets of constraints that could satisfy
the spirit of Naddef’s challenge. One such example is Naddef’s conjecture
that simply using the three classes of inequalities from his 1985 paper (path,
wheelbarrow, and bicycle inequalities) [5] with integrality constraints only on
the variables x, would be sufficient to formulate the problem. Since it is not
known if these three classes of inequalities can be separated in polynomial
time, the theorem above does not directly address this conjecture.

However, if we are given an arbitrary constraint of the form ax ≥ b, it can
be recognized in polynomial time whether or not this constraint belongs to a
particular class of inequality (path, wheelbarrow, or bicycle) and whether or
not a potential solution x∗ violates this constraint. If that potential solution
x∗ were not in the GTSP polytope, then there would be a polynomially sized
verification of the graph G not being Hamiltonian, which would imply NP =
co-NP .

This would apply to any integer programming formulation with a finite
number of inequality classes that contain inequalties that are normal. In this
case, we define normal to mean that the membership of any individual con-
straint in a class can be verified in polynomial time.

This implies Naddef’s challenge cannot be completed successfully using
normal inequalities, unless NP = co-NP . However, our formulation follows
its spirit, as the integer constrained variables in our formulation y have a one-
to-one correspondence to the integer constrained variables x in the challenge.
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4.3 Interesting Notes Concerning Degree Two Nodes in GTSP

It is difficult to solve Naddef’s challenge because the integer programming
formulation for the GTSP has xe ∈ {0, 1, 2}, whereas most formulations for
other graph theory applications simply require xe ∈ {0, 1}. In the variant
of GTSP where doubled edges are disallowed, but nodes may still be visited
multiple times, the formulation from above would be a solution to the Naddef
challenge, since in this case, x = y and z = 0. If there are degree 2 nodes
present in the graph, then disallowing doubles edges forces the tour across a
particular path, since the tour cannot visit this degree 2 node and return back
along the same edge.

Assume we have an integer programming formulation for the GTSP. Then
any integer point x∗ dominates a convex combination of GTSP tours, or it
must violate at least one inequality from this formulation. Therefore, using the
graphs G and G′ illustrated in Theorem 3 (where G is a 3-regular graph, and
G′ is the same graph with every edge subdivided into two with a new degree
2 node), the GTSP formulation when applied to G′ would certify whether the
graph G is Hamiltonian or non-Hamiltonian. If the constraint classes of the
formulation are normal, as defined at the end of the previous section, then this
certificate can be constructed in polynomial time.

In the case where G is not Hamiltonian, an integer programming formula-
tion for the GTSP must have a violated constraint for any solution x∗ where
x∗(E′) = |E′|, where E′ is the edge set of G′. Assuming n = |V |, the node
set of G, and n′ = |V ′|, the node set of G′, we can determine the size of |E′|
by noting that every edge in E′ connects a degree 3 node to a degree 2 node.
Therefore, the set of degree 2 nodes can be represented by W = V ′ \ V and
|E′| is equal to the number of degree 2 nodes in G′ times two, or 2(n′−n). The
number of degree 2 nodes in G′ is the same as the number of edges in G, which
is 3

2n, so we get n′ − n = 3
2n or n = 2

5n
′, and 2(n′ − n) = 2(n′ − 2

5n
′) = 6

5n
′.

Since x(δ(v′)) ≥ 2 for any node in v′ ∈ G′, adding these constraints over all
degree 2 nodes gives the constraint:∑

v′∈W
x(δ(v′)) = x(E′) ≥ 6

5n
′

Since the graph is not Hamiltonian, this contraint cannot be satisfied at
equality, leading to x(E′) > 6

5n
′. Since the expression 6

5n
′ is equal to two times

an integer quantity (n′ − n), 6
5n
′ must be an even integer. Furthermore, for

any solution to the formulation, x(δ(v′)) must be positive and even for every
degree 2 node v′ ∈ G′, and thus x(E′) must also be even, so the constraint
can be stated as: ∑

v′∈W
x(δ(v′)) = x(E′) ≥ 6

5n
′ + 2

But these inequalities do not make up a normal class, as defined in the
previous section. This is because the validity of this inequality relies on the
certainty of G being non-Hamiltonian. We believe these inequalities can be
lifted to a complete graph with no coefficient greater than 3 (we are quite sure
we could do this with maximum coefficient 4).
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Another interesting graph involving degree 2 nodes comes from subdividing
an edge twice, creating a path of three edges with two intermediate degree 2
nodes. Given any 3-regular, 3-edge connected graph, Haddadan et al. [16]
showed that the point x∗ where xe = 1 for every edge in such a graph will be
in the GTSP polytope, even though every node in the graph has odd degree.
Now imagine choosing any individual degree 3 node, call it v, and subdividing
each of the incident edges twice, creating six degree 2 nodes, two along each
path. Now the solution x∗ where xe = 1 for every edge cannot be in the
GTSP polytope, since we can easily find a violated 3-tooth comb inequality
by choosing v and its immediate neighbors for the handle, and the pairs of
adjacent degree 2 nodes as the teeth (see figure 2).

Fig. 2 A violated 3-tooth comb inequality

Furthermore, consider a solution x∗ that is in the GTSP polytope for a
graph, where xe = 1 along each edge of a path of at least three edges connecting
two higher-degree nodes with only degree 2 nodes along the interior of the path
(see figure 3). Then every GTSP tour that makes up the convex combination
of tours for the solution x∗ must also have xe = 1 along each edge of the path.
To prove this for a path P of three edges, notice that x(P ) ≥ 3 for any GTSP
tour, and since x∗(P ) = 3, we know x(P ) = 3 for every GTSP tour in the
convex combination indicated by x∗. If xe = 2 for some edge in the path, then
since the path has three edges, x(P ) ≥ 4, and thus could not be in the convex
combination of tours indicated by x∗. Alternatively, consider a solution x∗

that is in the GTSP polytope for a graph, where xe = 1 along each edge of
a path of only two edges connecting two higher-degree nodes with a degree 2
node in the middle of the path. Note that an edge with xe = 2 may be in one
of the GTSP tours in the convex combination indicated by x∗, since one tour
of weight 1

2 could visit one edge of the path twice, and another tour of weight
1
2 could visit the other edge twice.

Fig. 3 A path of 3 edges connecting 2 higher-degree nodes with interior nodes of degree 2
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5 Relaxations and Steiner Nodes

5.1 Symmetric GTSP with Steiner Nodes

Cornuéjols et al. also proposed a variant of the GTSP where only a subset of
nodes are visited [5]. As in most road networks, one may travel through many
intersections that are not also destinations when traveling from one place to
another. Cornuéjols et al. referred to these intersection nodes as Steiner nodes.
This creates a formulation on a graph G = (Vd∪Vs, E) with Vd∩Vs = ∅ where
Vd represents the set of destination nodes and Vs represents the set of Steiner
nodes.

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(v)
xe is positive and even ∀v ∈ Vd∑

e∈δ(v)
xe is even ∀v ∈ Vs∑

e∈δ(S)
xe ≥ 2 ∀S ⊂ V where S ∩ Vd 6= ∅, 6= Vd

xe ≥ 0 ∀e ∈ E.
xe is integer ∀e ∈ E.

Note that only sets that include destination nodes need to have corresponding

cut constraints, and these can be limited to sets where the intersection is |Vd|
2

or smaller. Again, these can be replaced by the flow constraints in the style
proposed by Martin [14]. The constraints used in our computational results are
similar to those in the multi-commodity flow formulation found by Letchford,
Nasiri, and Theis [13]. We were able to reduce the number of variables used by
Letchford, et al. by a factor of 2, by setting many variables to 0, as we did with
the flow variables in the formulation of section 4.1. Assume Vd = {1, 2, ..., d}
and Vs = {d+ 1, d+ 2, ...n} and designate city d as the home city. We include
d − 1 flow problems, where each problem requires that 2 units of flow pass
from nodes S = {k + 1, k + 2, ..., d} to node k using the values of x as edge
capacities. Since nodes in S are all sources, we can set flow into these nodes
to zero, as well as setting the flow coming out of node k to zero.

fki,j = 0 ∀j ∈ Vd, k ∈ Vd \ {d} with j > k, {i, j} ∈ E
fkk,i = 0 ∀k ∈ Vd \ {d}, {i, k} ∈ E∑

i∈δ(k)
fki,k = 2 ∀k ∈ Vd \ {d}∑

i∈δ(j)
fki,j −

∑
i∈δ(j)

fkj,i = 0 ∀j ∈ V, k ∈ Vd \ {d} with either j < k or j ∈ Vs

fki,j + fkj,i ≤ xe ∀k ∈ Vd \ {d}, {i, j} = e ∈ E

5.2 Preventing the Half-z Path without Spanning Trees

While the spanning tree constaints (3) of section 3.2 can prevent half-z paths
when integrality of y is enforced, for the computational results in the next
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section, better integrality gaps were obtained by using the subtour elimination
constraints plus the following, which prevents half-z paths (with three or more
edges) without requiring the integrality of y.∑

e′∈δ(i)

xe′ +
∑

e′∈δ(j)

xe′ − 2ze ≥ 4 ∀e ∈ E (4)

where i and j are endpoints of edge e.
If ze = 1, this constraint is the subtour elimination constraint for the set

{i, j}. If ze = 0, this is the sum of the degree constraints (lower bound) for
nodes i and j. But in the middle of a path of length three or longer with edges
that have ye = 0 and ze = 1

2 , the left side of this constraint will only add to
three.

It should be noted that this constraint can only be used when both end-
points of e are destination nodes, since Steiner nodes do not have a lower
bound of degree 2, but could be degree zero.

It should also be noted that if the GTSP instance is composed only of three
paths of length three between two specific nodes (see figure 1 from section
3.1) constraints (2) from section 3.1 (those that enforce even degree) and (4)
(defined above) will be enough to close the entire integrality gap using an LP
relaxation. If the paths are all four or more edges long, this constraint will not
eliminate the integrality gap, but will help. (See figure 4)

Objective value 12 using only constraint (2)

Objective value 13 using both constraints (2) and (4)

Objective value 14 for an integer solution

ye = 1 and ze = 0

ye = 0 and ze = 1
2

ye = 0 and ze = 1

Fig. 4 Solutions from a 3-path configuration of four edges each

As the paths get longer, the integrality gap slowly grows. The spanning
tree constraints will be useful once the paths reach a length of at least seven.
(See figure 5)

Spanning tree constraints help close the integrality gap on these long-path
graphs because any spanning tree must contain n−1 edges, which will enforce∑
e∈E ye + ze ≥ n − 1, where n is the number of nodes in the graph. For a
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Objective value 21 using only constraint (2)

Objective value 23 using both constraints (2) and (4)

Objective value 26 for an integer solution

ye = 1 and ze = 0

ye = 0 and ze = 1
2

ye = 0 and ze = 1

Fig. 5 Solutions from a 3-path configuration of seven edges each

relaxation on a graph that tries to save costs by employing frequent fractional
z variables, this constraint limits the amount that can be saved. An optimal
solution for a relaxation including constraint (3) for the 3-path configuration
of seven-edge paths is shown in figure 6.

ye = 2
3

and ze = 1
3

ye = 2
3

and ze = 1
6

Fig. 6 Objective value 24 using constraints (2), (3), and (4)

Spanning tree constraints (3) did not contribute to smaller integrality gaps
in our computational results of section 6 when added to the LP relaxation
consisting of the subtour elimination constraints (or their compact equivalent),
and the constraints in (4) designed specifically to prevent the short half-z path.

5.3 Removing Steiner Nodes

Removing Steiner nodes increase the effectiveness of constraints in (4). A graph
with Steiner nodes G = (Vd ∪ Vs, E) can be transformed into a graph without
Steiner nodes G′ = (Vd, E

′) by doing the following:

For each pair of nodes i, j ∈ Vd, if the shortest path from i to j in G
contains no other nodes in Vd, then add an edge connecting i to j to E′ with
a cost equal to the cost of this shortest path; otherwise, do not add an edge
from i to j to E′.

In all but one of our test problems (see section 6), removing Steiner nodes
resulted in fewer, not more, edges in the original instance. That removing
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Steiner nodes often reduces the total edges in a graph was also observed by
Corberán, Letchford, and Sanchis [4].

6 Computational Results

Fig. 7 Map of basic United States highway system

Our search for a reasonable sized data set based on the interstate high-
ways of the United States led us to a text file uploaded by Sergiy Kolodyazh-
nyy on GitHub [11]. After a few errors were corrected and additions made,
we had a highway network with 216 nodes and 358 edges, with a maxi-
mum degree node of seven (Indianapolis). See figure 7. Data for this graph,
and the cities used to create the instances in this section, may be found at
https://ns.faculty.brynathyn.edu/interstate/

Table 1 GTSP instances

Solution
name desccription destinations (miles)

dakota3path 3-path configuarion in northern plains 11 2682
NFLcities Cities with National Football League teams 29 11050
NWcities Cities in the Northwest region 43 8119
CAPcities 48 state capitals plus Washington D.C. 49 14878
AtoJcities Cities beginning with letters from A to J 101 17931
ESTcities Cities east of the Mississippi River 139 13251
MSAcities Centers of 145 metropolitan statistical areas 145 22720
deg3cities Cities in original graph with degree ≥ 3 171 18737
NScities Cities that Neil Simonetti has visited 174 22127
CtoWcities Cities beginning with letters from C to W 182 24389
ALLcities Entire graph 216 26410
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Instances were created from this map by choosing a subset of cities as desti-
nation nodes, and adding any cities along a shortest path between destinations
as Steiner nodes. Alternate versions of these instances were constructed by re-
moving the Steiner nodes as indicated in section 5.3. Table 1 gives the basic
information for several instances we used. Table 2 shows the results from run-
ning the relaxation of the formulation from Cornuéjols et al. [5]. It should
be noted that the solutions found by this relaxation were the same whether
Steiner nodes were removed or not.

Table 2 Relaxations from Cornuéjols et al. formulation [5]

destinations edges integrality
name (Steiner nodes) (w/o Steiner) gap (%)

dakota3path 11 (0) 12 (12) 139 (5.18%)
NFLcities 29 (152) 304 (135) 35 (0.32%)
NWcities 43 (4) 63 (59) 12 (0.15%)
CAPcities 49 (132) 301 (199) 34 (0.23%)
AtoJcities 101 (95) 326 (289) 261.5 (1.45%)
ESTcities 139 (2) 243 (240) 61.4 (0.46%)
MSAcities 145 (63) 348 (317) 143 (0.63%)
deg3cities 171 (16) 321 (305) 70 (0.37%)
NScities 174 (29) 341 (324) 93.5 (0.42%)
CtoWcities 182 (30) 353 (358) 151 (0.62%)
ALLcities 216 (0) 358 (358) 274.8 (1.04%)

Table 3 Relaxations from our additional constraints

integrality gap with integrality gap w/o best % of gap closed
name Steiner nodes (%) Steiner nodes (%) from formulation in [5]

dakota3path - 0 (0%) 100%
NFLcities 35 (0.32%) same as Steiner 0%
NWcities 8 (0.10%) same as Steiner 33.3%
CAPcities 34 (0.23%) same as Steiner 0%
AtoJcities 228.5 (1.45%) same as Steiner 12.6%
ESTcities 53.9 (0.46%) same as Steiner 12.2%
MSAcities 114.5 (0.50%) 98.5 (0.43%) 31.1%
deg3cities 70 (0.37%) same as Steiner 0%
NScities 48.5 (0.22%) same as Steiner 48.1%
CtoWcities 103 (0.42%) 111.5 (0.46%) 31.8%
ALLcities - 217.8 (0.82%) 20.7%

Running times on a 2.1GHz Xeon processor for all of the relaxations were
under 10 seconds, while the running times to generate the integer solutions
never exceeded five minutes. We wish to point out that the value of the new
formulation is not a faster running time, but the reduced integrality gap.

In this paper, the integrality gap refers to the difference in objective values
between the program where integer constraints are enforced and the program
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where the integer constraints are relaxed. The percentage is the gap size ex-
pressed as a percentage of the integer solution value. This is different than the
ratio definitions of integrality gap used in some other contexts. [2]

When our constraints were added, the spanning tree constraints (3) were
not useful when (2) and (4) were present. In most cases, removing Steiner
nodes did not change the optimal values found by our relaxation. In one case,
the relaxation was better when the Steiner nodes were removed, and in one
case, the relaxation was worse when the Steiner nodes were removed. Table 3
shows our results, where the last column indicates the percentage that our
formulation closed of the gap left by the formulation of Cornuéjols et al. [5].

We noticed that in instances where the ze variables were rarely positive,
our relaxation fared no better than that of Cornuéjols et al. But when the
number of edges with values of ze > 0 reached about 10% of the total of edges
where xe > 0, we were able to shave anywhere from 10% to almost 50% of the
gap left behind by Cornuéjols et al. (See figure 8)
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Fig. 8 Scatter plot of integrality gap closure and percent of variables with ze > 0

7 A Note Concerning T-joins

In section 2, we noted that the constraints of requiring a sum of variables to
be even was unique and difficult, which was a reason Naddef proposed his
challenge, described in section 4. At first glance, these constraints may appear
to have the same type of structure as the T-join problem, but this is not the
case, as seen in a book by Cook, et al. [3].
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Let G = (V,E) be an undirected graph and let T ⊂ V with |T | even. A
T-join is a subgraph H of G where the set of all nodes of odd degree in H
is T . The T-join polytope would therefore consist of all edge vectors t which
indicate a T-join H. The constraint for this polytope would be t(δ(v)) is odd
for all vertices v in T and even for all vertices v not in T .

t(δ(v))−1
2 ∈ Z for all v ∈ T

t(δ(v))
2 ∈ Z for all v 6∈ T

While this appears to have the same issue as our GTSP formulation of section
2, the T-join problem can be described very differently. The common appli-
cation of the T-join problem, used in solving the Chinese postman problem
[7] assumes nonnegative costs within an IP formulation seeking a minimum
cost T-join, and therefore we only need the dominant polytope, which can be
described as:

t(δ(S)) ≥ 1 for any set S where |S ∩ T | is odd
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