Skip to main content

A New Integer Programming Formulation of the Graphical Traveling Salesman Problem

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12707))

  • 968 Accesses

Abstract

In the Traveling Salesman Problem (TSP), a salesman wants to visit a set of cities and return home. There is a cost \(c_{ij}\) of traveling from city i to city j, which is the same in either direction for the Symmetric TSP. The objective is to visit each city exactly once, minimizing total travel costs. In the Graphical TSP, a city may be visited more than once, which may be necessary on a sparse graph. We present a new integer programming formulation for the Graphical TSP requiring only two classes of constraints that are either polynomial in number or polynomially separable, while addressing an open question proposed by Denis Naddef.

R. D. Carr—This material is based upon research supported in part by the U. S. Office of Naval Research under award number N00014-18-1-2099.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carr, R.D., Lancia, G.: Compact vs. Exponential-size LP relaxations. Oper. Res. Lett. 30, 57–66 (2002)

    Google Scholar 

  2. Carr, R.D., Vempala, S.: On the held-Karp relaxation for the asymmetric and symmetric traveling salesman problems. Math. Program. 100, 569–587 (2004)

    Article  MathSciNet  Google Scholar 

  3. Corberán, A., Letchford, A.N., Sanchis, J.M.: A cutting plane algorithm for the general routing problem. Math. Program. 90, 291–316 (2001)

    Article  MathSciNet  Google Scholar 

  4. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer Polyhedra. Math. Program. 33, 1–27 (1985)

    Article  MathSciNet  Google Scholar 

  5. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman problem. Oper. Res. 2, 393–410 (1954)

    MathSciNet  MATH  Google Scholar 

  6. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)

    Article  MathSciNet  Google Scholar 

  7. Fleischmann, B.: A cutting plane procedure for the traveling salesman problem on road networks. Eur. J. Oper. Res. 21(3), 307–317 (1985)

    Article  Google Scholar 

  8. Garey, M.R., Johnson, D.S., Tarjan, E.: The planar hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5, 704–714 (1976)

    Article  MathSciNet  Google Scholar 

  9. Guten, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Variations. Springer, New York (2007) https://doi.org/10.1007/b101971

  10. Junger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science, vol. 7, Network Models Elsevier, Amsterdam (1995)

    Google Scholar 

  11. Kolodyazhnyy, S.: Dijkstra Algorithm for Shortest Path. https://github.com/SergKolo/MSUD-CS2050-SPRING-2016/blob/master/input_for_dijkstra.txt (web) Accessed June 2018

  12. Lancia, G., Serafini, P.: The parity polytope. Compact Extended Linear Programming Models. EATOR, pp. 113–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63976-5_8

    Chapter  MATH  Google Scholar 

  13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: algorithms and complexity. Handbooks Oper. Res. Manage. Sci. 4(C), 445–522 (1993)

    Google Scholar 

  14. Letchford, A.N., Nasiri, S.D., Theis, D.O.: Compact formulations of the Steiner TSP and related problems. Eur. J. Oper. Res. 228, 83–92 (2013)

    Article  Google Scholar 

  15. Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10, 119–128 (1991)

    Article  MathSciNet  Google Scholar 

  16. Naddef, D.: Personal Communication (2019)

    Google Scholar 

  17. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36, 445–450 (1961)

    Google Scholar 

  18. Ratliff, H.D., Rosenthal, A.: Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Oper. Res. 31(3), 507–521 (1983)

    Article  Google Scholar 

  19. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Berlin (2003)

    Google Scholar 

  20. Tutte, W.T.: On the problem of decomposing a graph into \(n\) connected factors. J. London Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  Google Scholar 

  21. Yannakakis, M.: Expressing combinatorial optimization problems by Linear Programs. J. Comput. Syst. Sci. 43, 441–466 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Simonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carr, R.D., Simonetti, N. (2021). A New Integer Programming Formulation of the Graphical Traveling Salesman Problem. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73879-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73878-5

  • Online ISBN: 978-3-030-73879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics