Skip to main content

A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polynomial Matrix with \(2\,\times \,2\) Submatrices

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12707))

Abstract

In this paper, we consider the problem of computing the degree of the determinant of a block-structured symbolic matrix (a generic partitioned polynomial matrix) \(A = (A_{\alpha \beta } x_{\alpha \beta } t^{d_{\alpha \beta }})\), where \(A_{\alpha \beta }\) is a \(2 \times 2\) matrix over a field \(\mathbf {F}\), \(x_{\alpha \beta }\) is an indeterminate, and \(d_{\alpha \beta }\) is an integer for \(\alpha , \beta = 1,2,\dots , n\), and t is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum perfect bipartite matching problem.

The main result of this paper is a combinatorial \(O(n^5)\)-time algorithm for the deg-det computation of a \((2 \times 2)\)-type generic partitioned polynomial matrix of size \(2n \times 2n\). We also present a min-max theorem between the degree of the determinant and a potential defined on vector spaces. Our results generalize the classical primal-dual algorithm (Hungarian method) and min-max formula (Egerváry’s theorem) for maximum weight perfect bipartite matching.

The author was supported by JSPS KAKENHI Grant Number JP17K00029, 20K23323, 20H05795, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohn, P.M.: Skew Fields: Theory of General Division Rings. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  2. Dieudonné, J.: Les déterminants sur un corps non commutatif. Bull. de la Société Mathématique de France 71, 27–45 (1943)

    Article  MathSciNet  Google Scholar 

  3. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl. Bureau Stand. 71B(4), 241–245 (1967)

    Article  MathSciNet  Google Scholar 

  4. Egerváry, J.: Matrixok kombinatorius tulajdonságairól. In: Matematikai és Fizikai Lapok, pp. 16–28 (1931)

    Google Scholar 

  5. Frank, A., Tardos, E.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7, 49–65 (1987)

    Article  MathSciNet  Google Scholar 

  6. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: Operator scaling: theory and applications. Found. Comput. Math. 20, 223–290 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hamada, M., Hirai, H.: Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix (2017). arXiv:1705.02060

  8. Hamada, M., Hirai, H.: Computing the nc-rank via discrete convex optimization on CAT(0) spaces (2020). arXiv:2012.13651v1

  9. Hirai, H.: Computing the degree of determinants via discrete convex optimization on Euclidean buildings. SIAM J. Appl. Geom. Algebra 3(3), 523–557 (2019)

    Article  MathSciNet  Google Scholar 

  10. Hirai, H., Ikeda, M.: A cost-scaling algorithm for computing the degree of determinants (2020). arXiv:2008.11388v2

  11. Hirai, H., Iwamasa, Y.: A combinatorial algorithm for computing the rank of a generic partitioned matrix with \(2 \times 2\) submatrices. In: Proceedings of the 21st Conference on Integer Programming and Combinatorial Optimization (IPCO 2020). LNCS, vol. 12125, pp. 196–208 (2020)

    Google Scholar 

  12. Hirai, H., Iwamasa, Y.: A combinatorial algorithm for computing the rank of a generic partitioned matrix with \(2 \times 2\) submatrices (2020). arXiv:2004.10443

  13. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Non-commutative Edmonds’ problem and matrix semi-invariants. Comput. Complexity 26, 717–763 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Constructive non-commutative rank computation is in deterministic polynomial time. Comput. Complexity 27, 561–593 (2018). https://doi.org/10.1007/s00037-018-0165-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwata, S., Kobayashi, Y.: A weighted linear matroid parity algorithm. SIAM J. Comput. (2021)

    Google Scholar 

  16. Iwata, S., Murota, K.: A minimax theorem and a Dulmage-Mendelsohn type decomposition for a class of generic partitioned matrices. SIAM J. Matrix Anal. Appl. 16(3), 719–734 (1995)

    Article  MathSciNet  Google Scholar 

  17. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complexity 13, 1–46 (2004)

    Article  MathSciNet  Google Scholar 

  18. Kuhn, H.W.: The Hungarian method for assignment problems. Naval Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  19. Lovász, L.: On determinants, matchings, and random algorithms. In: International Symposium on Fundamentals of Computation Theory (FCT 1979) (1979)

    Google Scholar 

  20. Lovász, L.: Singular spaces of matrices and their application in combinatorics. Boletim da Sociedade Brasileira de Matemática 20(1), 87–99 (1989)

    Article  MathSciNet  Google Scholar 

  21. Oki, T.: On solving (non)commutative weighted Edmonds’ problem. In: Proceedings of the 47th International Colloquium on Automata, Languages and Programming (ICALP’20), Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 89:1–89:14 (2020)

    Google Scholar 

  22. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  23. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22(2), 107–111 (1947)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuni Iwamasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iwamasa, Y. (2021). A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polynomial Matrix with \(2\,\times \,2\) Submatrices. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73879-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73878-5

  • Online ISBN: 978-3-030-73879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics