Abstract
This paper presents preliminary work on using deep neural networks to guide general-purpose heuristic algorithms for performing utilitarian combinatorial assignment. In more detail, we use deep learning in an attempt to produce heuristics that can be used together with e.g., search algorithms to generate feasible solutions of higher quality more quickly. Our results indicate that our approach could be a promising future method for constructing such heuristics.
This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and by grants from the National Graduate School in Computer Science (CUGS), Sweden, Excellence Center at Linköping-Lund for Information Technology (ELLIIT), TAILOR funded by EU Horizon 2020 research and innovation programme (GA 952215), and Knut and Alice Wallenberg Foundation (KAW 2019.0350).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: Proceedings Fourth International Conference on MultiAgent Systems, pp. 39–46. IEEE (2000)
Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128 (2018)
Di Mauro, N., Basile, T.M.A., Ferilli, S., Esposito, F.: Coalition structure generation with GRASP. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS (LNAI), vol. 6304, pp. 111–120. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15431-7_12
Farinelli, A., Bicego, M., Bistaffa, F., Ramchurn, S.D.: A hierarchical clustering approach to large-scale near-optimal coalition formation with quality guarantees. Eng. Appl. Artif. Intell. 59, 170–185 (2017)
Keinänen, H.: Simulated annealing for multi-agent coalition formation. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 30–39. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01665-3_4
Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Präntare, F.: Simultaneous coalition formation and task assignment in a real-time strategy game. In: Master thesis (2017)
Präntare, F., Heintz, F.: An anytime algorithm for simultaneous coalition structure generation and assignment. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 158–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03098-8_10
Präntare, F., Heintz, F.: An anytime algorithm for optimal simultaneous coalition structure generation and assignment. Auton. Agents Multi-Agent Syst. 34(1), 1–31 (2020)
Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 135(1–2), 1–54 (2002)
Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combinatorial auction generalizations. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 69–76 (2002)
Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265 (2019)
Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685 (2018)
Sen, S., Dutta, P.S.: Searching for optimal coalition structures. In: Proceedings Fourth International Conference on MultiAgent Systems, pp. 287–292. IEEE (2000)
Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)
Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)
Yeh, C., Sugawara, T.: Solving coalition structure generation problem with double-layered ant colony optimization. In: 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 65–70. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Präntare, F., Tiger, M., Bergström, D., Appelgren, H., Heintz, F. (2021). Towards Utilitarian Combinatorial Assignment with Deep Neural Networks and Heuristic Algorithms. In: Heintz, F., Milano, M., O'Sullivan, B. (eds) Trustworthy AI - Integrating Learning, Optimization and Reasoning. TAILOR 2020. Lecture Notes in Computer Science(), vol 12641. Springer, Cham. https://doi.org/10.1007/978-3-030-73959-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-73959-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73958-4
Online ISBN: 978-3-030-73959-1
eBook Packages: Computer ScienceComputer Science (R0)