Skip to main content

Value-Alignment Equilibrium in Multiagent Systems

  • Conference paper
  • First Online:
Trustworthy AI - Integrating Learning, Optimization and Reasoning (TAILOR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12641))

  • 1038 Accesses

Abstract

Value alignment has emerged in recent years as a basic principle to produce beneficial and mindful Artificial Intelligence systems. It mainly states that autonomous entities should behave in a way that is aligned with our human values. In this work, we summarize a previously developed model that considers values as preferences over states of the world and defines alignment between the governing norms and the values. We provide a use-case for this framework with the Iterated Prisoner’s Dilemma model, which we use to exemplify the definitions we review. We take advantage of this use-case to introduce new concepts to be integrated with the established framework: alignment equilibrium and Pareto optimal alignment. These are inspired on the classical Nash equilibrium and Pareto optimality, but are designed to account for any value we wish to model in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrighetto, G., Governatori, G., Noriega, P.: Normative Multi-agent Systems, vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, April 2013. https://doi.org/10.4230/DFU.Vol4.12111.i

  2. Atkinson, K., Bench-Capon, T.: States, goals and values: revisiting practical reasoning. Argument Comput. 7(2–3), 135–154 (2016). https://doi.org/10.3233/AAC-160011

    Article  MATH  Google Scholar 

  3. Axelrod, R.M.: The Evolution of Cooperation. Basic Books, New York (1984)

    MATH  Google Scholar 

  4. BellĂą, L., Liberati, P.: Inequality Analysis: The Gini Index. Food and Agriculture Organization of the United Nations (2006). http://www.fao.org/policy-support/resources/resources-details/en/c/446282/

  5. Chinchuluun, A., Pardalos, P., Migdalas, A., Pitsoulis, L.: Pareto Optimality Game Theory And Equilibria, vol. 17. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77247-9

    Book  MATH  Google Scholar 

  6. Cowell, F.A.: Measuring Inequality. LSE Perspectives in Economic Analysis. Oxford University Press, Oxford (2009)

    Google Scholar 

  7. Cranefield, S., Winikoff, M., Dignum, V., Dignum, F.: No pizza for you: value-based plan selection in BDI agents. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 178–184. International Joint Conferences on Artificial Intelligence Organization (2017). https://doi.org/10.24963/ijcai.2017/26

  8. Gorrieri, R.: Labeled transition systems. Process Algebras for Petri Nets. MTCSAES, pp. 15–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55559-1_2

    Chapter  MATH  Google Scholar 

  9. Huang, L.: Nash theorem (in game theory). In: Encyclopedia of Mathematics. Springer (2002). http://www.encyclopediaofmath.org/index.php?title=Nash_theorem_(in_game_theory)&oldid=40004

  10. Lu, Y.: Artificial intelligence: a survey on evolution, models, applications and future trends. J. Manage. Anal. 6(1), 1–29 (2019). https://doi.org/10.1080/23270012.2019.1570365

  11. Mahmoud, M.A., Ahmad, M.S., Mohd Yusoff, M.Z., Mustapha, A.: A review of norms and normative multiagent systems. Sci. World J. 2014, 1–23 (2014). https://doi.org/10.1155/2014/684587

    Article  Google Scholar 

  12. Miceli, M., Castelfranchi, C.: A cognitive approach to values. J. Theor. Soc. Behav. 19(2), 169–193 (1989). https://doi.org/10.1111/j.1468-5914.1989.tb00143.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-5914.1989.tb00143.x

  13. Nowak, M.A., Sigmund, K.: Tit for tat in heterogeneous populations. Nature 355(6357), 250–253 (1992). https://doi.org/10.1038/355250a0

    Article  Google Scholar 

  14. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  15. Russell, S.: Provably beneficial artificial intelligence. In: The Next Step: Exponential Life. BBVA-Open Mind (2017)

    Google Scholar 

  16. Russell, S.: Human Compatible: Artificial Intelligence and the Problem of Control. Penguin LCC, New York (2019)

    Google Scholar 

  17. Schwartz, H.M.: Multi-Agent Machine Learning: A Reinforcement Approach. Wiley, New York (2014). https://doi.org/10.1002/9781118884614

  18. Schwartz, S.H.: An overview of the Schwartz theory of basic values. Online Read. Psychol. Cult. 2(1) (2012). https://doi.org/10.9707/2307-0919.1116

  19. Sierra, C., Osman, N., Noriega, P., Sabater-Mir, J., Perello-Moragues, A.: Value alignment: a formal approach. In: Responsible Artificial Intelligence Agents Workshop (RAIA) in AAMAS 2019 (2019)

    Google Scholar 

  20. Sullivan, S., Philip, P.: Ethical theories (2002). https://www.qcc.cuny.edu/SocialSciences/ppecorino/ETHICS_TEXT/CONTENTS.htm

Download references

Acknowledgments

This work has been supported by the AppPhil project (RecerCaixa 2017), the CIMBVAL project (funded by the Spanish government, project # TIN2017-89758-R), the EU WeNet project (H2020 FET Proactive project # 823783) and the EU TAILOR project (H2020 # 952215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nieves Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montes, N., Sierra, C. (2021). Value-Alignment Equilibrium in Multiagent Systems. In: Heintz, F., Milano, M., O'Sullivan, B. (eds) Trustworthy AI - Integrating Learning, Optimization and Reasoning. TAILOR 2020. Lecture Notes in Computer Science(), vol 12641. Springer, Cham. https://doi.org/10.1007/978-3-030-73959-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73959-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73958-4

  • Online ISBN: 978-3-030-73959-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics