Abstract
We have defined an interdisciplinary program for training a new generation of researchers who will be ready to leverage the use of Artificial Intelligence (AI)-based models and techniques even by non-expert users. The final goal is to make AI self-explaining and thus contribute to translating knowledge into products and services for economic and social benefit, with the support of Explainable AI systems. Moreover, our focus is on the automatic generation of interactive explanations in natural language, the preferred modality among humans, with visualization as a complementary modality.
Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860621.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M.: Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda. In: Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM, New York (2018). https://doi.org/10.1145/3173574.3174156
Alonso, J.M., Bugarín, A.: ExpliClas: automatic generation of explanations in natural language for Weka classifiers. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2019). https://doi.org/10.1109/FUZZ-IEEE.2019.8859018
Alonso, J.M., Castiello, C., Magdalena, L., Mencar, C.: Explainable Fuzzy Systems - Paving the Way from Interpretable Fuzzy Systems to Explainable AI Systems. Studies in Computational Intelligence. Springer (2021). https://doi.org/10.1007/978-3-030-71098-9
Alonso, J.M., Ramos-Soto, A., Reiter, E., van Deemter, K.: An exploratory study on the benefits of using natural language for explaining fuzzy rule-based systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015489
Alonso, J.M., Toja-Alamancos, J., Bugarín, A.: Experimental study on generating multi-modal explanations of black-box classifiers in terms of gray-box classifiers. In: Proceedings of the IEEE World Congress on Computational Intelligence (2020). https://doi.org/10.1109/FUZZ48607.2020.9177770
Budzynska, K., Villata, S.: Argument mining. IEEE Intell. Inform. Bull. 17, 1–7 (2016)
Demollin, M., Shaheen, Q., Budzynska, K., Sierra, C.: Argumentation theoretical frameworks for explainable artificial intelligence. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG). Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.10/
EU High Level Expert Group on AI: AI Ethics Guidelines for Trustworthy AI. Technical report, European Commission, Brussels, Belgium (2019). https://doi.org/10.2759/346720
EU High Level Expert Group on AI: The assessment list for trustworthy artificial intelligence (ALTAI) for self assessment. Technical report, European Commission, Brussels, Belgium (2019). https://doi.org/10.2759/002360
European Commission: Artificial Intelligence for Europe. Technical report, European Commission, Brussels, Belgium (2018). https://ec.europa.eu/digital-single-market/en/news/communicationartificial-intelligence-europe. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions (SWD(2018) 137 final)
Faille, J., Gatt, A., Gardent, C.: The natural language pipeline, neural text generation and explainability. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG), Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.5/
Ferreira, T.C., van der Lee, C., van Miltenburg, E., Krahmer, E.: Neural data-to-text generation: a comparison between pipeline and end-to-end architectures. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Hong Kong, pp. 552–562. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1052
Fisher, W.R.: Human Communication as Narration: Toward a Philosophy of Reason, Value, and Action. University of South Carolina Press, Columbia (1989)
Floridi, L., et al.: AI4People - an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds Mach. 28(4), 689–707 (2018). https://doi.org/10.1007/s11023-018-9482-5
Forrest, J., Sripada, S., Pang, W., Coghill, G.: Towards making NLG a voice for interpretable machine learning. In: Proceedings of the International Conference on Natural Language Generation (INLG), The Netherlands, pp. 177–182. Association for Computational Linguistics, Tilburg University (2018). https://doi.org/10.18653/v1/W18-6522
Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018). https://doi.org/10.1613/jair.5477
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1–93:42 (2018). https://doi.org/10.1145/3236009
Hennessy, C., Bugarin, A., Reiter, E.: Explaining Bayesian Networks in natural language: state of the art and challenges. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG), Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.7/
Mariotti, E., Alonso, J.M., Gatt, A.: Towards harnessing natural language generation to explain black-box models. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG), Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.6/
Mayn, A., van Deemter, K.: Towards generating effective explanations of logical formulas: challenges and strategies. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG), Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.9/
Moryossef, A., Goldberg, Y., Dagan, I.: Improving quality and efficiency in plan-based neural data-to-text generation. In: Proceedings of the International Conference on Natural Language Generation (INLG), Tokyo, Japan, pp. 377–382. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/w19-8645
Narayan, S., Gardent, C.: Deep learning approaches to text production. In: Synthesis Lectures on Human Language Technologies, vol. 13, no. 1, pp. 1–199 (2020)
Parliament and Council of the European Union: General data protection regulation (GDPR) (2016). http://data.europa.eu/eli/reg/2016/679/oj
Pereira-Fariña, M., Bugarín, A.: Content determination for natural language descriptions of predictive Bayesian Networks. In: Proceedings of the Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 784–791. Atlantis Press (2019)
Polanyi, M.: The Tacit Dimension. Doubleday & Company Inc., New York (1966)
Rago, A., Cocarascu, O., Toni, F.: Argumentation-based recommendations: fantastic explanations and how to find them. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1949–1955 (2018). https://doi.org/10.24963/ijcai.2018/269
Reiter, E.: Natural language generation challenges for explainable AI. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI), pp. 3–7. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/W19-8402
Rieger, A., Theune, M., Tintarev, N.: Toward natural language mitigation strategies for cognitive biases in recommender systems. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG), Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.11/
Sevilla, J.: Explaining data using causal Bayesian Networks. In: Proceedings of the Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI) at the International Conference on Natural Language Generation (INLG), Dublin, Ireland (2020). https://www.aclweb.org/anthology/2020.nl4xai-1.8/
Sierra, C., de Mántaras, R.L., Simoff, S.J.: The argumentative mediator. In: Proceedings of the European Conference on Multi-Agent Systems (EUMAS) and the International Conference on Agreement Technologies (AT), Valencia, Spain, pp. 439–454 (2016). https://doi.org/10.1007/978-3-319-59294-7_36
Stent, A., Bangalore, S.: Natural Language Generation in Interactive Systems. Cambridge University Press, Cambridge (2014)
Stepin, I., Alonso, J.M., Catala, A., Pereira, M.: Generation and evaluation of factual and counterfactual explanations for decision trees and fuzzy rule-based classifiers. In: Proceedings of the IEEE World Congress on Computational Intelligence (2020). https://doi.org/10.1109/FUZZ48607.2020.9177629
Stepin, I., Alonso, J.M., Catala, A., Pereira-Fariña, M.: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access 9, 11974–12001 (2021). https://doi.org/10.1109/ACCESS.2021.3051315
Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_10
Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)
Williams, S., Reiter, E.: Generating basic skills reports for low-skilled readers. Nat. Lang. Eng. 14, 495–535 (2008). https://doi.org/10.1017/S1351324908004725
Acknowledgment
The NL4XAI project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 860621.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Alonso, J.M. et al. (2021). Interactive Natural Language Technology for Explainable Artificial Intelligence. In: Heintz, F., Milano, M., O'Sullivan, B. (eds) Trustworthy AI - Integrating Learning, Optimization and Reasoning. TAILOR 2020. Lecture Notes in Computer Science(), vol 12641. Springer, Cham. https://doi.org/10.1007/978-3-030-73959-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-73959-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73958-4
Online ISBN: 978-3-030-73959-1
eBook Packages: Computer ScienceComputer Science (R0)