Skip to main content

StegColNet: Steganalysis Based on an Ensemble Colorspace Approach

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

Image steganography refers to the process of hiding information inside images. Steganalysis is the process of detecting a steganographic image. We introduce a steganalysis approach that uses an ensemble color space model to obtain a weighted concatenated feature activation map. The concatenated map helps to obtain certain features explicit to each color space. We use a levy-flight grey wolf optimization strategy to reduce the number of features selected in the map. We then use these features to classify the image into one of two classes: whether the given image has secret information stored or not. Extensive experiments have been done on a large scale dataset extracted from the Bossbase dataset. Also, we show that the model can be transferred to different datasets and perform extensive experiments on a mixture of datasets. Our results show that the proposed approach outperforms the recent state of the art deep learning steganalytical approaches by 2.32% on average for 0.2 bits per channel (bpc) and 1.87% on average for 0.4 bpc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gowda, S.N., Yuan, C.: ColorNet: investigating the importance of color spaces for image classification. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 581–596. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_36

    Chapter  Google Scholar 

  2. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Kahn, D.: The history of steganography. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 1–5. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61996-8_27

    Chapter  Google Scholar 

  4. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography: survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010)

    Article  Google Scholar 

  5. Li, N., Hu, J., Sun, R., Wang, S., Luo, Z.: A high-capacity 3D steganography algorithm with adjustable distortion. IEEE Access 5, 24457–24466 (2017)

    Article  Google Scholar 

  6. Tsai, Y.-Y.: An adaptive steganographic algorithm for 3D polygonal models using vertex decimation. Multimedia Tools Appl. 69(3), 859–876 (2012). https://doi.org/10.1007/s11042-012-1135-8

    Article  Google Scholar 

  7. Cheng, Y.M., Wang, C.M.: A high-capacity steganographic approach for 3D polygonal meshes. Visual Comput. 22(9–11), 845–855 (2006)

    Article  Google Scholar 

  8. Chakraborty, S., Jalal, A.S., Bhatnagar, C.: LSB based non blind predictive edge adaptive image steganography. Multimedia Tools Appl. 76(6), 7973–7987 (2016). https://doi.org/10.1007/s11042-016-3449-4

    Article  Google Scholar 

  9. Jayaram, P., Ranganatha, H.R., Anupama, H.S.: Information hiding using audio steganography-a survey. Int. J. Multimedia Appl. (IJMA) 3, 86–96 (2011)

    Article  Google Scholar 

  10. Kumar, V., Kumar, D.: A modified DWT-based image steganography technique. Multimedia Tools Appl. 77(11), 13279–13308 (2017). https://doi.org/10.1007/s11042-017-4947-8

    Article  Google Scholar 

  11. Narasimmalou, T., Joseph, R.A.: Discrete wavelet transform based steganography for transmitting images. In: IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012), pp. 370–375. IEEE (2012)

    Google Scholar 

  12. Gowda, S.N.: Innovative enhancement of the Caesar cipher algorithm for cryptography. In: 2016 2nd International Conference on Advances in Computing, Communication and Automation (ICACCA) (Fall), pp. 1–4. IEEE, September 2016

    Google Scholar 

  13. Chang, C.C., Yu, Y.H., Hu, Y.C.: Hiding secret data into an AMBTC-compressed image using genetic algorithm. In Second International Conference on Future Generation Communication and Networking Symposia, vol. 3, pp. 154–157. IEEE, December 2008

    Google Scholar 

  14. Gowda, S.N.: Using Blowfish encryption to enhance security feature of an image. In: 6th International Conference on Information Communication and Management (ICICM), pp. 126–129. IEEE, October 2016

    Google Scholar 

  15. Luo, X.Y., Wang, D.S., Wang, P., Liu, F.L.: A review on blind detection for image steganography. Signal Process. 88(9), 2138–2157 (2008)

    Article  Google Scholar 

  16. Fridrich, J., Goljan, M.: On estimation of secret message length in LSB steganography in spatial domain. In: Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, pp. 23–35. International Society for Optics and Photonics, June 2004

    Google Scholar 

  17. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  18. Deng, H. and Runger, G.: Feature selection via regularized trees. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, June 2012

    Google Scholar 

  19. Chhikara, R.R., Sharma, P., Singh, L.: An improved dynamic discrete firefly algorithm for blind image steganalysis. Int. J. Mach. Learn. Cybern. 9(5), 821–835 (2016). https://doi.org/10.1007/s13042-016-0610-3

    Article  Google Scholar 

  20. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  21. Pathak, Y., Arya, K.V., Tiwari, S.: Feature selection for image steganalysis using levy flight-based grey wolf optimization. Multimedia Tools Appl. 78(2), 1473–1494 (2018). https://doi.org/10.1007/s11042-018-6155-6

    Article  Google Scholar 

  22. Gowda, S.N.: Human activity recognition using combinatorial deep belief networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6. (2017)

    Google Scholar 

  23. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  24. Piva, A. and Barni, M.: The first BOWS contest: break our watermarking system. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 650516. International Society for Optics and Photonics, February 2007

    Google Scholar 

  25. Goljan, M., Fridrich, J., Cogranne, R.: Rich model for steganalysis of color images. In: IEEE International Workshop on Information Forensics and Security (WIFS), pp. 185–190. IEEE, December 2014

    Google Scholar 

  26. Zeng, J., Tan, S., Liu, G., Li, B., Huang, J.: WISERNet: wider separate-then-reunion network for steganalysis of color images. IEEE Trans. Inf. Forensics Secur. 14(10), 2735–2748 (2019)

    Article  Google Scholar 

  27. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  28. Xu, G.: Deep convolutional neural network to detect J-UNIWARD. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 67–73. ACM, June 2017

    Google Scholar 

  29. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  30. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016)

    Article  Google Scholar 

  31. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE, October 2014

    Google Scholar 

  32. Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in steganography. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 650502. International Society for Optics and Photonics, February 2007

    Google Scholar 

  33. Tang, W., Li, B., Luo, W., Huang, J.: Clustering steganographic modification directions for color components. IEEE Signal Process. Lett. 23(2), 197–201 (2016)

    Article  Google Scholar 

  34. Qin, X., Li, B., Tan, S., Zeng, J.: A novel steganography for spatial color images based on pixel vector cost. IEEE Access 7, 8834–8846 (2019)

    Article  Google Scholar 

  35. Kang, Y., Liu, F., Yang, C., Xiang, L., Luo, X., Wang, P.: Color image steganalysis based on channel gradient correlation. Int. J. Distrib. Sensor Netw. 15(5), 1550147719852031 (2019)

    Article  Google Scholar 

  36. Gowda, S.N., Yuan, C.: Using an ensemble color space model to tackle adversarial examples (2020). arXiv preprint arXiv:2003.05005

  37. Gowda, S.N.: An intelligent fibonacci approach to image steganography. In: 2017 IEEE Region 10 Symposium (TENSYMP), pp. 1–4. IEEE, July 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gowda, S.N., Yuan, C. (2021). StegColNet: Steganalysis Based on an Ensemble Colorspace Approach. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics