Skip to main content

Multi-modal 3D Human Pose Estimation for Human-Robot Collaborative Applications

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

We propose a multi-modal 3D human pose estimation approach which combines a 2D human pose estimation network utilizing RGB data with a 3D human pose estimation network utilizing the 2D pose estimation results and depth information, in order to predict 3D human poses. We improve upon the state-of-the-art by proposing the use of a more accurate 2D human pose estimation network, as well as by introducing squeeze-excite blocks into the architecture of the 3D pose estimation network. More importantly, we focused on the challenging application of 3D human pose estimation during collaborative tasks. In that direction, we selected appropriate sub-sets that address collaborative tasks from a large-scale multi-view RGB-D dataset and generated a novel one-view RGB-D dataset for training and testing respectively. We achieved above state-of-the-art performance among RGB-D approaches when tested on a novel benchmark RGB-D dataset on collaborative assembly that we have created and made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.5281/zenodo.4475685.

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis, June 2014. https://doi.org/10.1109/CVPR.2014.471

  2. Buys, K., Cagniart, C., Baksheev, A., De Laet, T., De Schutter, J., Pantofaru, C.: An adaptable system for RGB-D based human body detection and pose estimation. J. Vis. Commun. Image Represent. 25(1), 39–52 (2014)

    Article  Google Scholar 

  3. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Article  Google Scholar 

  4. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7035–7043 (2017)

    Google Scholar 

  5. Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R.: Learning to detect and track visible and occluded body joints in a virtual world. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 450–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_27

    Chapter  Google Scholar 

  6. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: ICCV (2017)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (2017). https://doi.org/10.1109/TPAMI.2019.2913372

  8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely connected convolutional networks (07 2017). https://doi.org/10.1109/CVPR.2017.243

  9. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1325–2339 (2014). https://doi.org/10.1109/TPAMI.2013.248

    Article  Google Scholar 

  10. Joo, H., et al.: Panoptic studio: a massively multiview system for social interaction capture. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 190–204 (2019)

    Article  Google Scholar 

  11. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

    Chapter  Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  14. Rhodin, H., Salzmann, M., Fua, P.: Unsupervised geometry-aware representation for 3D human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 765–782. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_46

    Chapter  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  17. Varol, G., et al.: Learning from synthetic humans. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  18. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 398–407 (2017)

    Google Scholar 

  19. Zimmermann, C., Welschehold, T., Dornhege, C., Burgard, W., Brox, T.: 3D human pose estimation in RGBD images for robotic task learning, pp. 1986–1992, May 2018. https://doi.org/10.1109/ICRA.2018.8462833

Download references

Acknowledgement

This work has been supported by the European Union’s Horizon 2020 research and innovation programme funded project namely: “Co-production CeLL performing Human-Robot Collaborative AssEmbly (CoLLaboratE)” under the grant agreement with no: 820767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Peppas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peppas, K., Tsiolis, K., Mariolis, I., Topalidou-Kyniazopoulou, A., Tzovaras, D. (2021). Multi-modal 3D Human Pose Estimation for Human-Robot Collaborative Applications. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics