Skip to main content

Exponential Weighted Moving Average of Time Series in Arbitrary Spaces with Application to Strings

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

The exponentially weighted moving average (EWMA) is an important tool in time series analysis. So far the research on EWMA is typically limited to the real (vector) space \(\mathbb {R}^n\). In this work we present an extension of this concept to arbitrary spaces. It is based on an interpretation of EWMA as a special case of weighted mean computation. We develop three computation methods. In addition to the direct computation in the original space, we particularly study an approach to embedding the data items of a time series into vector space. The feasibility of our EWMA computation framework is exemplarily demonstrated on strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.uni-muenster.de/PRIA/forschung/dpe.html.

References

  1. Bunke, H., Günter, S.: Weighted mean of a pair of graphs. Computing 67(3), 209–224 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bunke, H., Jiang, X., Abegglen, K., Kandel, A.: On the weighted mean of a pair of strings. Pattern Anal. Appl. 5(1), 23–30 (2002)

    Article  MathSciNet  Google Scholar 

  3. Chu, X., Ilyas, I.F., Krishnan, S., Wang, J.: Data cleaning: overview and emerging challenges. In: Proceedings of International Conference on Management of Data (SIGMOD), pp. 2201–2206 (2016)

    Google Scholar 

  4. Demartines, P., Hérault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)

    Article  Google Scholar 

  5. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recogn. 43(4), 1642–1655 (2010)

    Article  Google Scholar 

  6. Franek, L., Jiang, X., He, C.: Weighted mean of a pair of clusterings. Pattern Anal. Appl. 17(1), 153–166 (2014)

    Article  MathSciNet  Google Scholar 

  7. Gardner, E.S.: Exponential smoothing: the state of the art - Part II. Int. J. Forecast. 22(4), 637–666 (2006)

    Article  Google Scholar 

  8. Gärtner, T.: Kernels for Structured Data. World Scientific, Singapore (2008)

    Book  Google Scholar 

  9. Jiang, X., Wentker, J., Ferrer, M.: Generalized median string computation by means of string embedding in vector spaces. Pattern Recogn. Lett. 33(7), 842–852 (2012)

    Article  Google Scholar 

  10. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw. Sci. 5(1), 6 (2020)

    Article  Google Scholar 

  11. Ma, S., Belkin, M.: Kernel machines that adapt to GPUs for effective large batch training. In: Proceedings of 2nd SysML Conference (2019)

    Google Scholar 

  12. Moreno-García, C.F., Serratosa, F., Jiang, X.: Correspondence edit distance to obtain a set of weighted means of graph correspondences. Pattern Recogn. Lett. 134, 29–36 (2020)

    Article  Google Scholar 

  13. Nakerst, G., Brennan, J., Haque, M.: Gradient descent with momentum - to accelerate or to super-accelerate? arXiv abs/2001.06472 (2020)

    Google Scholar 

  14. Nienkötter, A., Jiang, X.: Distance-preserving vector space embedding for consensus learning. IEEE Trans. Syst. Man Cybern.: Syst. 51(2), 1244–1257 (2021)

    Article  Google Scholar 

  15. Nienkötter, A., Jiang, X.: Kernel-based generalized median computation for consensus learning (2021). Under review

    Google Scholar 

  16. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  17. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: With R Examples. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-52452-8

    Book  MATH  Google Scholar 

  18. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  Google Scholar 

  19. Wang, X., Wang, C.: Time series data cleaning: a survey. IEEE Access 8, 1866–1881 (2020)

    Article  Google Scholar 

  20. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 167(1), 7–41 (2009)

    Article  MathSciNet  Google Scholar 

  21. Welsing, A.: Moving average for time series of strings. Bachelor Thesis, University of Münster (2020)

    Google Scholar 

  22. Xu, L., Bai, L., Jiang, X., Tan, M., Zhang, D., Luo, B.: Deep Rényi entropy graph kernel. Pattern Recogn. 111, 107668 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Welsing, A., Nienkötter, A., Jiang, X. (2021). Exponential Weighted Moving Average of Time Series in Arbitrary Spaces with Application to Strings. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics