Skip to main content

Experimental Analysis of Bidirectional Pairwise Ordinal Classifier Cascades

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

Ordinal classifier cascades (OCCs) are basic machine learning tools in the field of ordinal classification (OC) that consist of a sequence of classification models (CMs). Each of the CMs is trained in combination with a specific subtask of the initial OC task. OCC architectures make use of a data set’s ordinal class structure by simply arranging the CMs with respect to the corresponding class order (e.g., small - medium - large). Recently, we proposed bidirectional OCC (bOCC) architectures that combine two basic one-directional OCCs, based on a person-independent pain intensity recognition scenario, in combination with support vector machines. In the current study, we further analyse the effectiveness of bOCC architectures. To this end, we evaluate our proposed approach based on different OC benchmark data sets. Additionally, we analyse the proposed bOCCs in combination with two different classification models. Our outcomes indicate that it seems to be beneficial to replace basic pairwise one-directional OCCs by the pairwise bOCC architecture, in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://waikato.github.io/weka-wiki/datasets/.

  2. 2.

    www.mathworks.com.

References

  1. Abe, S.: Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer, London (2005). https://doi.org/10.1007/1-84628-219-5

    Book  MATH  Google Scholar 

  2. Bellmann, P., Hihn, H., Braun, D.A., Schwenker, F.: Binary classification: counterbalancing class imbalance by applying regression models in combination with one-sided label shifts. In: ICAART. SCITEPRESS (2021, to be published)

    Google Scholar 

  3. Bellmann, P., Lausser, L., Kestler, H.A., Schwenker, F.: Introducing bidirectional ordinal classifier cascades based on a pain intensity recognition scenario. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12666, pp. 773–787. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68780-9_58

    Chapter  Google Scholar 

  4. Bellmann, P., Schwenker, F.: Ordinal classification: working definition and detection of ordinal structures. IEEE Access 8, 164380–164391 (2020)

    Article  Google Scholar 

  5. Bellmann, P., Thiam, P., Schwenker, F.: Multi-classifier-systems: architectures, algorithms and applications. In: Pedrycz, W., Chen, S.-M. (eds.) Computational Intelligence for Pattern Recognition. SCI, vol. 777, pp. 83–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89629-8_4

    Chapter  Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  8. Dietterich, T.G., Bakiri, G.: Error-correcting output codes: a general method for improving multiclass inductive learning programs. In: AAAI, pp. 572–577. AAAI Press/The MIT Press (1991)

    Google Scholar 

  9. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  10. Hihn, H., Braun, D.A.: Specialization in hierarchical learning systems. Neural Process. Lett. 52(3), 2319–2352 (2020). https://doi.org/10.1007/s11063-020-10351-3

    Article  Google Scholar 

  11. HĂ¼hn, J.C., HĂ¼llermeier, E.: Is an ordinal class structure useful in classifier learning? IJDMMM 1(1), 45–67 (2008)

    Article  Google Scholar 

  12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  13. Lattke, R., Lausser, L., MĂ¼ssel, C., Kestler, H.A.: Detecting ordinal class structures. In: Schwenker, F., Roli, F., Kittler, J. (eds.) MCS 2015. LNCS, vol. 9132, pp. 100–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20248-8_9

    Chapter  Google Scholar 

  14. Lausser, L., Schäfer, L.M., Kestler, H.A.: Ordinal classifiers can fail on repetitive class structures. Arch. Data Sci. Ser. A 4(1), 1–25 (2018)

    Google Scholar 

  15. Lausser, L., Schäfer, L.M., KĂ¼hlwein, S.D., Kestler, A.M.R., Kestler, H.A.: Detecting ordinal subcascades. Neural Process. Lett. 52(3), 2583–2605 (2020). https://doi.org/10.1007/s11063-020-10362-0

    Article  Google Scholar 

  16. Lausser, L., Schäfer, L.M., Schirra, L.R., Szekely, R., Schmid, F., Kestler, H.A.: Assessing phenotype order in molecular data. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  17. Thiam, P., et al.: Multi-modal pain intensity recognition based on the senseemotion database. IEEE Trans. Affect. Comput. 1 (2019). https://doi.org/10.1109/taffc.2019.2892090

  18. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    MATH  Google Scholar 

  19. Walter, S., et al.: The BioVid heat pain database data for the advancement and systematic validation of an automated pain recognition system. In: CYBCONF, pp. 128–131. IEEE (2013). https://doi.org/10.1109/CYBConf.2013.6617456

  20. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  21. Wolpert, D.H.: The lack of A priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The work of Peter Bellmann and Friedhelm Schwenker is supported by the project Multimodal recognition of affect over the course of a tutorial learning experiment (SCHW623/7-1) funded by the German Research Foundation (DFG). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research. Hans A. Kestler acknowledges funding from the German Science Foundation (DFG, 217328187 (SFB 1074) and 288342734 (GRK HEIST)). Hans A. Kestler also acknowledges funding from the German Federal Ministry of Education and Research (BMBF) e:MED confirm (id 01ZX1708C) and TRAN-SCAN VI - PMTR-pNET (id 01KT1901B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellmann, P., Lausser, L., Kestler, H.A., Schwenker, F. (2021). Experimental Analysis of Bidirectional Pairwise Ordinal Classifier Cascades. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics