Skip to main content

Worker Support and Training Tools to Aid in Vehicle Quality Inspection for the Automotive Industry

  • Conference paper
  • First Online:
Technology and Innovation in Learning, Teaching and Education (TECH-EDU 2020)

Abstract

In the competitive automotive market, where extremely high-quality standards must be ensured independently of the growing product and manufacturing complexity brought by customization, reliable and precise detection of any non-conformities before the vehicle leaves the assembly line is paramount. In this paper we propose a wearable solution to aid quality control workers in the detection, visualization and relay of any non-conformities, while also reducing known performance issues such as skill gaps and fatigue, and improving training methods. We also explore how the reliability, precision and validity tests of the visualization module of our framework were performed, guaranteeing a 0% chance occurrence of undesired non-conformities in the following usability tests and training simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piero, N., Schmitt, M.: Virtual commissioning of camera-based quality assurance systems for mixed model assembly lines. Procedia Manuf. 11, 914–921 (2017). https://doi.org/10.1016/j.promfg.2017.07.195

    Article  Google Scholar 

  2. Escobar, C.A., Morales-Menendez, R.: Machine learning techniques for quality control in high conformance manufacturing environment. Adv. Mech. Eng. 10(2) (2018). https://doi.org/10.1177/1687814018755519

  3. Gewohn, M., Beyerer, J., Usländer, T., Sutschet, G.: Smart information visualization for first-time quality within the automobile production assembly line. IFAC-PapersOnLine 51(11), 423–428 (2018). https://doi.org/10.1016/j.ifacol.2018.08.333

    Article  Google Scholar 

  4. Pfeiffer, S.: Robots, Industry 4.0 and humans, or why assembly work is more than routine work. Societies 6(2), 16 (2016). https://doi.org/10.3390/soc6020016

    Article  Google Scholar 

  5. Zhou, Q., Chen, R., Huang, B., Liu, C., Yu, J., Yu, X.: An automatic surface defect inspection system for automobiles using machine vision methods. Sensors 19(3), 644 (2019). https://doi.org/10.3390/s19030644

    Article  Google Scholar 

  6. Borisov, N., Weyers, B., Kluge, A.: Designing a human machine interface for quality assurance in car manufacturing: an attempt to address the “functionality versus user experience contradiction” in professional production environments. Adv. Hum.-Comput. Interact. 2018, 9502692 (2018). https://doi.org/10.1155/2018/9502692

    Article  Google Scholar 

  7. Gewohn, M., Beyerer, J., Usländer, T., Sutschet, G.: A quality visualization model for the evaluation and control of quality in vehicle assembly. In: 2018 7th International Conference on Industrial Technology and Management (ICITM), p. 10. IEEE, Oxford (2018). https://doi.org/10.1109/icitm.2018.8333910

  8. Chauhan, V., Surgenor, B.: Fault detection and classification in automated assembly machines using machine vision. Int. J. Adv. Manuf. Technol. 90(9–12), 2491–2512 (2016). https://doi.org/10.1007/s00170-016-9581-5

    Article  Google Scholar 

  9. Pei, Z., Chen, L.: Welding component identification and solder joint inspection of automobile door panel based on machine vision. In: 2018 Chinese Control and Decision Conference (CCDC), pp. 6558–6563. IEEE, Shenyang (2018). https://doi.org/10.1109/CCDC.2018.8408283

  10. Chang, F., Liu, M., Dong, M., Duan, Y.: A mobile vision inspection system for tiny defect detection on smooth car-body surfaces based on deep ensemble learning. Meas. Sci. Technol. 30(12), 125905 (2019). https://doi.org/10.1088/1361-6501/ab1467

    Article  Google Scholar 

  11. Halim, A.: Applications of augmented reality for inspection and maintenance process in automotive industry. J. Fundam. Appl. Sci. 10(3S), 412–421 (2018)

    Google Scholar 

  12. Lima, J.P., et al.: Markerless tracking system for augmented reality in the automotive industry. Expert Syst. Appl. 82, 100–114 (2017). https://doi.org/10.1016/j.eswa.2017.03.060

    Article  Google Scholar 

  13. MobileDemand. https://www.ruggedtabletpc.com/industries. Accessed 27 Aug 2020

  14. Zebra. https://www.zebra.com/us/en/solutions/industry.html. Accessed 27 Aug 2020

  15. Vuzix. https://www.vuzix.com. Accessed 27 Aug 2020

  16. Capela, S., Silva, R., Khanal, S.R., Campaniço, A.T., Barroso, J., Filipe, V.: Engine labels detection for vehicle quality verification in the assembly line: a machine vision approach. In: Gonçalves, J.A., Braz-César, M., Coelho, J.P. (eds.) CONTROLO 2020. LNEE, vol. 695, pp. 740–751. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58653-9_71

    Chapter  Google Scholar 

  17. Khanal, S.R., Amorim, E.V., Filipe, V.: Classification of car parts using deep neural network. In: Gonçalves, J.A., Braz-César, M., Coelho, J.P. (eds.) CONTROLO 2020. LNEE, vol. 695, pp. 582–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58653-9_56

    Chapter  Google Scholar 

  18. Losada, J.L., Manolov, R.: The process of basic training, applied training, maintaining the performance of an observer. Qual. Quant. 49(1), 339–347 (2014). https://doi.org/10.1007/s11135-014-9989-7

    Article  Google Scholar 

  19. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  20. Blender. https://www.blender.org. Accessed 05 Sept 2020

  21. Unity3D. https://unity.com. Accessed 05 Sept 2020

  22. SPSS Software. https://www.ibm.com/analytics/spss-statistics-software. Accessed 05 Sept 2020

  23. Shavelson, R.J., Webb, N.M.: Generalizability Theory: A Primer, 1st edn. Sage Publications, Inc., Thousand Oaks (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by Project “INDTECH 4.0 – New Technologies for smart manufacturing”, n.º POCI- 01-0247-FEDER-026653, financed by the European Regional Development Fund (ERDF), through the COMPETE 2020 - Competitiveness and Internationalization Operational Program (POCI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Teresa Campaniço , Salik Khanal , Hugo Paredes or Vitor Filipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campaniço, A.T., Khanal, S., Paredes, H., Filipe, V. (2021). Worker Support and Training Tools to Aid in Vehicle Quality Inspection for the Automotive Industry. In: Reis, A., Barroso, J., Lopes, J.B., Mikropoulos, T., Fan, CW. (eds) Technology and Innovation in Learning, Teaching and Education. TECH-EDU 2020. Communications in Computer and Information Science, vol 1384. Springer, Cham. https://doi.org/10.1007/978-3-030-73988-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73988-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73987-4

  • Online ISBN: 978-3-030-73988-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics