Skip to main content

Students Drop Out Trends: A University Study

  • Conference paper
  • First Online:
Technology and Innovation in Learning, Teaching and Education (TECH-EDU 2020)

Abstract

The dropout of university students has been a factor of concern for educational institutions, affecting various aspects such as the institution’s reputation and funding and rankings. For this reason, it is essential to identify which students are at risk . In this study, algorithms based on decision trees and random forests are proposed to solve these problems using real data from 331 students from the University of Trásos-Montes and Alto Douro. In this work with these learning algorithms together with the training strategies , we managed to obtain an 89% forecast of students who may abandon their studies based on the evaluations of both semesters related to the first year and personal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engrá cia, P., Baptista, J: Percursos no ensino superior: situação após quatro anos dos alunos inscritos em licenciaturas de três anos. Lisboa: Direção-Geral de Estatísticas da Educação e Ciência (2018)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Vandamme, J.-P., Meskens, N., Superby, J.-F.: Predicting academic performance by data mining methods. Educ. Econ. 15(4), 405–419 (2007)

    Google Scholar 

  4. Thai Nghe, N., Janecek, P., Haddawy, P.: A comparative analysis oftechniques for predicting academic performance. In: 2007 37th Annual Frontiers in Education Conference-Global Engineering: Knowledge without Borders, Opportunities without Passports, pp. T2G–7. IEEE (2007)

    Google Scholar 

  5. Azmi, M.S.B.M., Paris, I.H.B.M.: Academic performance prediction based on voting technique. In: 2011 IEEE 3rd International Conference on Communication Software and Networks, pp. 24–27. IEEE (2011)

    Google Scholar 

  6. Kotsiantis, S.B., Pierrakeas, C.J., Pintelas, P.E.: Preventing student dropout in distance learning using machine learning techniques. In: Palade, V., Howlett, R.J., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 267–274. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45226-3_37

    Chapter  Google Scholar 

  7. Plagge, M.: Using artificial neural networks to predict first-year traditional students second year retention rates. In: Proceedings of the 51st ACM Southeast Conference, pp. 1–5 (2013)

    Google Scholar 

  8. Delen, D.: A comparative analysis of machine learning techniques for student retention management. Decis. Support Syst. 49(4), 498–506 (2010)

    Article  Google Scholar 

  9. Bogard, M., Helbig, T., Huff, G., James. C.: A comparison of empirical models for predicting student retention. White paper. Office of Institutional Research, Western Kentucky University (2011)

    Google Scholar 

  10. Márquez-Vera, C., Cano, A., Romero, C., Ventura, S.: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Appl. Intell. 38(3), 315–330 (2013)

    Google Scholar 

  11. Tinto, V.: Dropout from higher education: a theoretical synthesis of recent research. Rev. Educ. Res. 45(1), 89–125 (1975)

    Article  Google Scholar 

  12. Quinlan, J.R.: Generating production rules from decision trees. In: ijcai, vol. 87, pp. 304–307. Citeseer (1987)

    Google Scholar 

  13. Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217–222 (2005)

    Article  Google Scholar 

  14. Hassan, S.U., Akram, A., Haddawy, P.: Identifying important citations using contextual information from full text. In: 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 1–8. IEEE (2017)

    Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  16. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimationand model selection. In: Ijcai, Montreal, Canada, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, B., Pires, E.J.S., Reis, A., de Moura Oliveira, P.B., Barroso, J. (2021). Students Drop Out Trends: A University Study. In: Reis, A., Barroso, J., Lopes, J.B., Mikropoulos, T., Fan, CW. (eds) Technology and Innovation in Learning, Teaching and Education. TECH-EDU 2020. Communications in Computer and Information Science, vol 1384. Springer, Cham. https://doi.org/10.1007/978-3-030-73988-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73988-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73987-4

  • Online ISBN: 978-3-030-73988-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics