Abstract
Protein fossils, i.e. noncoding DNA descended from coding DNA, arise frequently from transposable elements (TEs), decayed genes, and viral integrations. They can reveal, and mislead about, evolutionary history and relationships. They have been detected by comparing DNA to protein sequences, but current methods are not optimized for this task. We describe a powerful DNA-protein homology search method. We use a 64 \(\times \) 21 substitution matrix, which is fitted to sequence data, automatically learning the genetic code. We detect subtly homologous regions by considering alternative possible alignments between them, and calculate significance (probability of occurring by chance between random sequences). Our method detects TE protein fossils much more sensitively than blastx, and \({>}10{\times }\) faster. Of the \(\sim \)7 major categories of eukaryotic TE, three were long thought absent in mammals: we find two of them in the human genome, polinton and DIRS/Ngaro. This method increases our power to find ancient fossils, and perhaps to detect non-standard genetic codes. The alternative-alignments and significance paradigm is not specific to DNA-protein comparison, and could benefit homology search generally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allison, L., Wallace, C.S., Yee, C.N.: Finite-state models in the alignment of macromolecules. J. Mol. Evol. 35(1), 77–89 (1992)
Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids Res. 25(17), 3389–3402 (1997)
Campbell, S., Aswad, A., Katzourakis, A.: Disentangling the origins of virophages and polintons. Curr. Opin. Virol. 25, 59–65 (2017)
Csűrös, M., Miklós, I.: Statistical alignment of retropseudogenes and their functional paralogs. Mol. Biol. Evol. 22(12), 2457–2471 (2005)
Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
Eddy, S.R.: A new generation of homology search tools based on probabilistic inference. Genome Inform. 23(1), 205–211 (2009)
Eddy, S.R.: A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 4(5), e1000069 (2008)
Frith, M.C.: Gentle masking of low-complexity sequences improves homology search. PLoS One 6(12), e28819 (2011)
Frith, M.C.: A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res. 39(4), e23–e23 (2011)
Frith, M.C.: How sequence alignment scores correspond to probability models. Bioinformatics 36(2), 408–415 (2020)
Gotoh, O.: Homology-based gene structure prediction: simplified matching algorithm using a translated codon (tron) and improved accuracy by allowing for long gaps. Bioinformatics 16(3), 190–202 (2000)
Guan, X., Uberbacher, E.C.: Alignments of DNA and protein sequences containing frameshift errors. Comput. Appl. Biosci. 12(1), 31–40 (1996)
Halperin, E., Faigler, S., Gill-More, R.: FramePlus: aligning DNA to protein sequences. Bioinformatics 15(11), 867–873 (1999)
Harris, R.S.: Improved pairwise alignment of genomic DNA. Ph.D. thesis, The Pennsylvania State University (2007)
Huang, X., Zhang, J.: Methods for comparing a DNA sequence with a protein sequence. Bioinformatics 12(6), 497–506 (1996)
Huson, D.H., et al.: MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct 13(1), 6 (2018)
Katzourakis, A., Gifford, R.J.: Endogenous viral elements in animal genomes. PLoS Genet. 6(11), e1001191 (2010)
Kent, W.J., et al.: The human genome browser at UCSC. Genome Res. 12(6), 996–1006 (2002)
Kiełbasa, S.M., Wan, R., Sato, K., Horton, P., Frith, M.C.: Adaptive seeds tame genomic sequence comparison. Genome Res. 21(3), 487–493 (2011)
Ko, P., Narayanan, M., Kalyanaraman, A., Aluru, S.: Space-conserving optimal DNA-protein alignment. In: Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004, pp. 80–88. IEEE (2004)
Lam, H.Y., et al.: Pseudofam: the pseudogene families database. Nucleic Acids Res. 37(suppl\(\_\)1), D738–D743 (2009)
Lysholm, F.: Highly improved homopolymer aware nucleotide-protein alignments with 454 data. BMC Bioinform. 13(1), 230 (2012)
Pearson, W.R., Wood, T., Zhang, Z., Miller, W.: Comparison of DNA sequences with protein sequences. Genomics 46(1), 24–36 (1997)
Peltola, H., Söderlund, H., Ukkonen, E.: Algorithms for the search of amino acid patterns in nucleic acid sequences. Nucleic Acids Res. 14(1), 99–107 (1986)
Poulter, R.T., Butler, M.I.: Tyrosine recombinase retrotransposons and transposons. In: Mobile DNA III, pp. 1271–1291 (2015)
Pritham, E.J., Feschotte, C.: Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc. Nat. Acad. Sci. 104(6), 1895–1900 (2007)
Raes, J., Van de Peer, Y.: Functional divergence of proteins through frameshift mutations. Trends Genet. 21(8), 428–431 (2005)
Roytberg, M., et al.: On subset seeds for protein alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(3), 483–494 (2009)
Sheetlin, S.L., Park, Y., Frith, M.C., Spouge, J.L.: Frameshift alignment: statistics and post-genomic applications. Bioinformatics 30(24), 3575–3582 (2014)
Smit, A., Hubley, R., Green, P.: RepeatMasker open-4.0 (2013–2015). http://www.repeatmasker.org
Starrett, G.J., et al.: Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol. (2020). veaa055
States, D., Botstein, D.: Molecular sequence accuracy and the analysis of protein coding regions. Proc. Nat. Acad. Sci. U.S.A. 88(13), 5518 (1991)
Steinegger, M., Söding, J.: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35(11), 1026–1028 (2017)
Storer, J., Hubley, R., Rosen, J., Wheeler, T.J., Smit, A.F.: The Dfam community resource of transposable element families, sequence models, and genome annotations. Mobile DNA 12(1), 1–14 (2021)
Tanay, A., Siggia, E.D.: Sequence context affects the rate of short insertions and deletions in flies and primates. Genome Biol. 9(2), R37 (2008)
Tzou, P.L., Huang, X., Shafer, R.W.: NucAmino: a nucleotide to amino acid alignment optimized for virus gene sequences. BMC Bioinform. 18(1), 138 (2017)
Wang, R., Xiong, J., Wang, W., Miao, W., Liang, A.: High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci. Rep. 6, 21139 (2016)
Wells, J.N., Feschotte, C.: A field guide to eukaryotic transposable elements. Ann. Rev. Genet. 54, 539–561 (2020)
Yu, Y.K., Hwa, T.: Statistical significance of probabilistic sequence alignment and related local hidden Markov models. J. Comput. Biol. 8(3), 249–282 (2001)
Yu, Y.K., Bundschuh, R., Hwa, T.: Hybrid alignment: high-performance with universal statistics. Bioinformatics 18(6), 864–872 (2002)
Zhang, Z., Pearson, W.R., Miller, W.: Aligning a DNA sequence with a protein sequence. J. Comput. Biol. 4(3), 339–349 (1997)
Acknowledgments
We thank the Frith and Asai lab members for discussions that clarified our thinking.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yao, Y., Frith, M.C. (2021). Improved DNA-versus-Protein Homology Search for Protein Fossils. In: Martín-Vide, C., Vega-Rodríguez, M.A., Wheeler, T. (eds) Algorithms for Computational Biology. AlCoB 2021. Lecture Notes in Computer Science(), vol 12715. Springer, Cham. https://doi.org/10.1007/978-3-030-74432-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-74432-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74431-1
Online ISBN: 978-3-030-74432-8
eBook Packages: Computer ScienceComputer Science (R0)