Skip to main content

A Recovery Algorithm and Pooling Designs for One-Stage Noisy Group Testing Under the Probabilistic Framework

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2021)

Abstract

Group testing saves time and resources by testing each preassigned group instead of each individual, and one-stage group testing emerged as essential for cost-effectively controlling the current COVID-19 pandemic. Yet, the practical challenge of adjusting pooling designs based on infection rate has not been systematically addressed. In particular, there are both theoretical interests and practical motivation to analyze one-stage group testing at finite, practical problem sizes, rather than asymptotic ones, under noisy, rather than perfect tests, and when the number of positives is randomly distributed, rather than fixed.

Here, we study noisy group testing under the probabilistic framework by modelling the infection vector as a random vector with Bernoulli entries. Our main contributions include a practical one-stage group testing protocol guided by maximizing pool entropy and a maximum-likelihood recovery algorithm under the probabilistic framework. Our findings highlight the implications of introducing randomness to the infection vectors – we find that the combinatorial structure of the pooling designs plays a less important role than the parameters such as pool size and redundancy.

Columbia University unrestricted funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldridge, M., Johnson, O., Scarlett, J.: Group testing: an information theory perspective. Found. Trends Commun. Inf. Theory 15(3–4), 196–392 (2019). https://doi.org/10.1561/0100000099

    Article  MATH  Google Scholar 

  2. Atia, G., Saligrama, V.: Noisy group testing: an information theoretic perspective. In: 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 355–362. IEEE (2009). https://doi.org/10.1109/ALLERTON.2009.5394787

  3. Atia, G.K., Saligrama, V.: Boolean compressed sensing and noisy group testing. IEEE Trans. Inf. Theory 58(3), 1880–1901 (2012). https://doi.org/10.1109/TIT.2011.2178156

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, C.L., Che, P.H., Jaggi, S., Saligrama, V.: Non-adaptive probabilistic group testing with noisy measurements: near-optimal bounds with efficient algorithms. In: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1832–1839. IEEE (2011). https://doi.org/10.1109/Allerton.2011.6120391

  5. Deka, S., Kalita, D.: Effectiveness of sample pooling strategies for SARS-CoV-2 mass screening by RT-PCR: a scoping review. J. Lab. Phys. 12(03), 212–218 (2020). https://doi.org/10.1055/s-0040-1721159

    Article  Google Scholar 

  6. Du, D.: Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientific Publishing Company, New Jersey (2006)

    Book  Google Scholar 

  7. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications. World Scientific Publishing Company, Singapore (1993)

    Book  Google Scholar 

  8. Erlich, Y., et al.: Biological screens from linear codes: theory and tools (2015). https://www.biorxiv.org/content/10.1101/035352v1.article-info. Accessed 14 Jan 2021

  9. Furon, T., Guyader, A., Cérou, F.: Decoding fingerprints using the Markov chain Monte Carlo method. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 187–192 (2012). https://doi.org/10.1109/WIFS.2012.6412647

  10. Ghosh, S., et al.: A compressed sensing approach to group-testing for COVID-19 detection. https://arxiv.org/abs/2005.07895 (2020). Accessed 14 Jan 2021

  11. Ghosh, S., et al.: Tapestry: a single-round smart pooling technique for COVID-19 testing (2020). https://www.medrxiv.org/content/10.1101/2020.04.23.20077727v2. Accessed 14 Jan 2021

  12. Inan, H.A., Kairouz, P., Wootters, M., Ozgur, A.: On the optimality of the Kautz-singleton construction in probabilistic group testing. In: 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 188–195. IEEE (2018). https://doi.org/10.1109/ALLERTON.2018.8635972

  13. Kainkaryam, R.M., Woolf, P.J.: Pooling in high-throughput drug screening. Curr. Opin. Drug Discov. Devel. 12(3), 339–350 (2009)

    Google Scholar 

  14. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10(4), 363–377 (1964). https://doi.org/10.1109/TIT.1964.1053689

    Article  MATH  Google Scholar 

  15. Liu, Y., Kadyan, S., Pe’er, I.: Group testing under the probabilistic framework code (2021). https://github.com/imyiningliu/group-testing-probabilistic-framework. Accesed 28 Feb 2021

  16. Malioutov, D., Malyutov, M.: Boolean compressed sensing: LP relaxation for group testing. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3305–3308. IEEE (2012). https://doi.org/10.1109/ICASSP.2012.6288622

  17. Mazumdar, A.: Nonadaptive group testing with random set of defectives. IEEE Trans. Inf. Theory 62(12), 7522–7531 (2016). https://doi.org/10.1109/TIT.2016.2613870

    Article  MathSciNet  MATH  Google Scholar 

  18. Scarlett, J., Cevher, V.: Near-optimal noisy group testing via separate decoding of items. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2311–2315. IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437667

  19. Scarlett, J., Johnson, O.: Noisy non-Adaptive group testing: a (near-)definite defectives approach. IEEE Trans. Inf. Theory 66(6), 3775–3797 (2020). https://doi.org/10.1109/TIT.2020.2970184

    Article  MathSciNet  MATH  Google Scholar 

  20. Sejdinovic, D., Johnson, O.: Note on noisy group testing: asymptotic bounds and belief propagation reconstruction. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 998–1003. IEEE (2010). https://doi.org/10.1109/ALLERTON.2010.5707018

  21. Sham, P., Bader, J.S., Craig, I., O’Donovan, M., Owen, M.: DNA pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3(11), 862–871 (2002). https://doi.org/10.1038/nrg930

    Article  Google Scholar 

  22. Shani-Narkiss, H., Gilday, O.D., Yayon, N., Landau, I.D.: Efficient and practical sample pooling for high-throughput PCR diagnosis of COVID-19 (2020). https://www.medrxiv.org/content/10.1101/2020.04.06.20052159v2. Accessed 14 Jan 2021

  23. Shental, N., et al.: Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers. Sci. Adv. 6(37), (2020). https://doi.org/10.1126/sciadv.abc5961

  24. Täufer, M.: Rapid, large-scale, and effective detection of COVID-19 via non-adaptive testing. J. Theor. Biol. 506(110450) (2020). https://doi.org/10.1016/j.jtbi.2020.110450, http://www.sciencedirect.com/science/article/pii/S0022519320303052

  25. Wu, S., Wei, S., Wang, Y., Vaidyanathan, R., Yuan, J.: Achievable partition information rate over noisy multi-access Boolean channel. In: IEEE International Symposium on Information Theory - Proceedings, pp. 1206–1210. IEEE (2014). https://doi.org/10.1109/ISIT.2014.6875024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsik Pe’er .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Kadyan, S., Pe’er, I. (2021). A Recovery Algorithm and Pooling Designs for One-Stage Noisy Group Testing Under the Probabilistic Framework. In: Martín-Vide, C., Vega-Rodríguez, M.A., Wheeler, T. (eds) Algorithms for Computational Biology. AlCoB 2021. Lecture Notes in Computer Science(), vol 12715. Springer, Cham. https://doi.org/10.1007/978-3-030-74432-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74432-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74431-1

  • Online ISBN: 978-3-030-74432-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics